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Recently, unmanned aerial vehicle (UAV) networks have been widely used in military and civilian 
scenarios; however, they suffer various attacks. Time-delay attacks maliciously delay the transmission of 
packets without tampering with the contents or significantly affecting the transmission pattern, making 
detection difficult. In this paper, a holistic cross-layer time-delay attack detection framework (HOTD) is 
proposed for UAV networks. A holistic selection of the delay-related features available at all layers is 
performed, before adopting supervised learning to build a consistency model between these features 
and the corresponding forwarding delay to calculate the degree of consistency of each node. Finally, 
the clustering method is used to distinguish malicious from benign nodes according to their degree of 
consistency. Experimental results show that the performance of HOTD is superior to that of state-of-
the-art detection methods, and it achieves a detection accuracy higher than 85% with less than 2.5% 
additional overhead.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

With the development of sensors, navigation systems, and wire-
less communication technologies, unmanned aerial vehicle (UAV) 
networks have achieved significant performance improvements 
and attracted considerable attention from researchers. In UAV net-
works, numerous UAVs cooperate in clusters to deliver messages. 
UAV networks have many advantages such as flexible deployment, 
low manufacturing cost, and good scalability. Owing to their excel-
lent performance, UAV networks have been widely used in military 
and civilian applications; for example, border patrols, disaster re-
sponse, and farmland monitoring [28].

UAV networks are flexible; however, owing to their distributed 
nature, they are vulnerable to many security threats, including ex-
ternal and internal attacks [21]. Internal attacks launched by mali-
cious nodes inside the network are more harmful than external at-
tacks carried out by unauthorised UAVs. For instance, attackers can 
invade legitimate UAVs and carry out various types of attacks (e.g. 
packet drop, flood, replay, or tamper attacks) for specific malicious 
purposes [42]. Unfortunately, internal attacks cannot be resisted by 
traditional encryption and authentication schemes alone [15].

* Corresponding author.
E-mail address: liangliu@nuaa.edu.cn (L. Liu).
https://doi.org/10.1016/j.jpdc.2023.03.001
0743-7315/© 2023 Elsevier Inc. All rights reserved.
Time-delay attacks (TDAs) are a type of internal attack in which 
malicious nodes deliberately delay the transmission of received 
data packets before forwarding them to the destination. TDAs are 
more challenging to deal with and pose a greater threat to the net-
work than other types of attacks. TDAs are characterised by being 
easy to implement and difficult to detect. Unlike traditional data-
oriented attacks, which need to break cryptographic protection and 
tamper with data packets, TDAs only delay packet transmission, 
without manipulating the contents [23]. Additionally, unlike packet 
drop, flood, and replay attacks, carefully launched TDAs may not 
obviously affect the pattern of packet transmission [12].

Simultaneously, TDAs are ubiquitous and can cause significant 
damage. Many time-sensitive applications for UAV networks, such 
as forest surveillance [49], traffic monitoring [10], video conferenc-
ing [11], disaster rescue [27], task coordination [55], and battlefield 
networks [52], involve stringent requirements for the transmission 
delay of data. Data must be delivered to the destination on time; 
otherwise, their value will be significantly reduced or invalidated. 
For example, in forest fire monitoring, if fire alarm information 
is maliciously delayed, the fire may spread rapidly, resulting in 
huge losses [13]. Additionally, the real-time collaboration of a UAV 
network depends on the exchange of formation control and route 
maintenance information between UAVs [8]. If this information is 
maliciously delayed, it may lead to confusion and failure in forma-
tion control (e.g. UAV collisions), outdated and invalid route paths, 
and possible loss of control over the UAV swarm [56].
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Owing to the threat of TDAs, effective detection mechanisms 
must be developed. However, most existing works concentrate on 
packet drop, flood, replay, and tamper attacks [2,24,35], and there 
has been little research on TDAs. Unfortunately, research on TDAs 
focuses on wired and static wireless sensor networks (WSNs) [22,
29,50], rather than UAV networks.

Compared with conventional WSNs and mobile ad hoc net-
works, UAV networks have many unique characteristics, such as 
high mobility, sparse distribution, intermittent connectivity, and 
unstable link quality. These characteristics may result in a lack 
of instant and stable end-to-end paths. Therefore, many UAV 
networks deliver packets based on the store-carry-forward (SCF) 
mechanism [3,18,33]: when there is no suitable next-hop node 
within the communication range, the message-holder UAV stores 
and carries the message until it encounters a suitable forwarding 
UAV. These characteristics make existing TDA detection approaches 
unsuitable for UAV networks.

To the best of our knowledge, there has been no research on 
TDA detection in UAV networks. The challenges in achieving detec-
tion are manifold: (1) Owing to the high topology dynamics and 
intermittent communication connectivity, the transmission path 
and delivery delay of packets change rapidly. Therefore, malicious 
TDAs cannot be detected by significant fluctuations in the delivery 
delay. (2) Owing to the SCF mechanism, a relatively short malicious 
delay injected by the attacker is likely to be misjudged as normal 
UAV SCF behaviour. (3) Owing to its complex architecture and high 
dynamics, many factors influence the forwarding delay, resulting in 
difficulty constructing mathematical or relational models.

To overcome these issues, we propose a holistic cross-layer TDA 
detection framework (HOTD). To detect TDAs efficiently and accu-
rately, we evaluate the forwarding delay of nodes rather than the 
delivery delay of messages. First, because the forwarding delay is 
related to each layer of the UAV network protocol (i.e. physical, 
medium access control (MAC), network, and application layers), we 
perform a holistic collection of the information available at these 
layers and then select the delay-related features from a cross-layer 
perspective. Subsequently, we utilise supervised learning to build 
a consistency model between the selected features and the corre-
sponding forwarding delay to calculate the degree of consistency of 
each node in the network. Lastly, we use the clustering method to 
distinguish malicious from benign nodes according to their degree 
of consistency. In summary, we make the following key contribu-
tions:

• We construct a mathematical model of TDAs in UAV networks. 
We believe that this is the first attempt to detect these attacks 
in UAV networks.

• We propose HOTD by comprehensively and systematically col-
lecting and selecting delay-related features at each layer in the 
UAV network protocol from a cross-layer perspective. The su-
pervised learning algorithm is used to construct a consistency 
model between these features and the corresponding forward-
ing delay, and the clustering method is utilised to identify 
malicious nodes.

• We implement extensive simulations on the Opportunistic 
Network Environment (ONE) simulator [16]. The experimen-
tal results show that the performance of HOTD is superior to 
that of state-of-the-art detection methods [12,30]. Simultane-
ously, HOTD achieves over 85% detection accuracy with less 
than 2.5% extra overhead.

The remainder of this paper is organised as follows. In Sec-
tion 2, we review and summarise existing works on malicious 
node detection. Section 3 formalises the model, including the net-
work and attack models. The proposed HOTD is described in detail 
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in Section 4. In Section 5, the performance of HOTD is evaluated 
through extensive simulations. Finally, we finish with Section 6.

2. Related works

2.1. Malicious node detection in UAV networks

In [35], researchers focused on colluding attacks, in which at-
tackers cooperate to launch packet drop attacks and compensate 
for their misconduct. Recorded encounter information and the for-
warding ratio of nodes were used to suspect and confirm malicious 
nodes in the network. In [2], three types of flood attacks were 
discussed and a trust-based approach was proposed to detect mali-
cious nodes. The behaviour of malicious nodes was manifested and 
led to the loss of their reputation metrics.

Additionally, machining learning (ML) algorithms have been 
used for malicious node detection in WSNs [9]. A hybrid attack 
was considered in which attackers launched packet drop, tamper, 
and replay attacks simultaneously [25]. The information exchange 
between nodes was used to evaluate the node trustworthiness, 
before K-means clustering was used to distinguish benign and ma-
licious nodes. An advanced attack was considered where malicious 
nodes only attacked data packets sent to specific neighbour nodes 
[53]. The reputation model of all nodes and edges was reduced 
to a multiple linear regression problem, and the support vector 
machine (SVM) algorithm was adopted to identify malicious edges 
and confirm malicious nodes. An intelligent attack was proposed, 
in which adversaries attacked only data packets that satisfied cer-
tain conditions [20]. Regression and clustering algorithms were 
used to evaluate the node trustworthiness and distinguish mali-
cious from benign nodes. However, TDAs are easier to implement 
and more difficult to detect than these types of attacks.

Although the main security threats capable of invading and ma-
nipulating UAV networks [44] are active interfering attacks (13%) 
[6] and jamming attacks (12%) [36], both are consistent with TDAs 
in terms of the attack purpose and intent [5]; however, internal 
TDAs are more covert. Furthermore, existing detection methods are 
based on the channel and radio frequency characteristics of the 
physical and MAC layers [51]. These methods cannot handle in-
ternal TDAs in UAV networks because the attacks do not trigger 
obvious alarms in any layer of the protocol stack.

2.2. TDA detection

Recently, TDAs have attracted significant attention from re-
searchers in various fields owing to their concealment and de-
structiveness, such as cyber-physical systems (CPSs) [57] and the 
precision time protocol (PTP) [30].

CPSs are classic time-sensitive systems that are vulnerable to 
TDAs and are typically in the form of wired networks and static 
WSNs. Researchers proposed a perturbation term to estimate the 
measurement deviation of the load and frequency, and used it to 
detect a TDA [50]. ML has been used to evaluate the impact of 
TDAs on system stability and security, and two-tiered mitigation 
measures have been developed to detect and defend against at-
tacks [22]. In [23], recurrent neural networks (RNNs) were used to 
assess the effect of a TDA, and then detect and characterise the 
attack. A deep learning model was used to efficiently process the 
long-term sequence data. Based on this work, the authors of [12]
improved the practicability of the system through real-time pro-
cessing and online analysis of data from CPS sensors. Moreover, 
different detection model strategies were proposed which could be 
adjusted dynamically based on different objectives.

The PTP is a synchronisation protocol introduced in IEEE Std. 
1588. It can achieve sub-microsecond accuracy, which makes it 
vulnerable to TDAs. Quantitative analysis of a TDA was conducted 



W. Zhai, S. Sun, L. Liu et al. Journal of Parallel and Distributed Computing 177 (2023) 117–130
Fig. 1. Example of unmanned aerial vehicle network.

to show the vulnerability of the PTP to this attack [29]. A new type 
of PTP clock was utilised to respond to and mitigate TDAs. Sub-
sequently, the authors of [30] further analysed and summarised 
the TDA surface in the PTP and proposed a protocol extension 
to enable the detection of TDAs against the PTP. Redundant paths 
and participants between the primary and secondary clocks were 
used to calculate the relative offset rate and time of the secondary 
clocks [31]. Clocks that drifted faster and further were suspected 
to be under attack.

However, the unique characteristics of TDAs in UAV networks 
cause existing detection approaches to be inefficient and inappli-
cable. Therefore, it is important to study TDA detection in UAV 
networks.

3. System model

In this section, we formulate a system model. We first describe 
a UAV network model, and then illustrate the TDA model in UAV 
networks, which is different from that in conventional wired net-
works and static WSNs.

3.1. Network model

Many UAVs patrol and search an area and send data packets to 
the ground station as needed. Without loss of generality, we ab-
stract the three-dimensional space into a Euclidean space, ignoring 
the vertical space [39]. The trajectories of UAVs are pre-planned 
and can be obtained in advance through mission and path planning 
[59]. Even if UAVs re-plan their trajectories during a mission, these 
trajectories can be obtained by the ground station in advance [14]. 
Based on the pre-planned trajectories, the ground station calculates 
the encounters between UAVs [18]. For ease of representation, we 
abstract communication between UAVs as an encounter point [33]. 
As depicted in Fig. 1, there is a ground station g0 and four UAVs 
u1, u2, u3, and u4, which fly along their trajectories. For example, 
UAV u1 encounters u2 at position e1 between 10 and 14 s, which 
means u1 and u2 can communicate between 10 and 14 s. 

3.1.1. Node model
We assume that there are malicious UAVs in the network which 

can carry out TDAs with a certain probability and the ground sta-
tion is a trusted authority that collects data packets from the UAVs 
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[25]. For convenience, in this paper both “UAV” and “node” repre-
sent a UAV in the network. A node can be represented as:

Node =< id, P T D A >, (1)

where id represents the unique identifier of the node (for example, 
u1, u2 in Fig. 1) and P T D A is the probability of the node launching 
a TDA. For a benign node, P T D A = 0, whereas 0 < P T D A ≤ 1 for a 
malicious node.

3.1.2. Path model
The transmission path of data packet m can be represented as

Path =〈(node1,node2, ts
1, tr

2), (node2,node3, ts
2, tr

3), . . . ,

(nodei,nodei+1, ts
i , tr

i+1), . . . , (noden,noden+1, ts
n, tr

n+1)〉,
(2)

where node1 and noden+1 denote the source and destination, re-
spectively; ts

i represents the time that nodei starts sending m to 
nodei+1; tr

i+1 represents the time that nodei+1 successfully receives 
m from nodei ; and tr

i+1 − ts
i = ttrans , where ttrans is the time taken 

to successfully transmit m from nodei to nodei+1.
For example, as illustrated in Fig. 1, at the start (0 s), u1

generates m and wants to send it to g0. For convenience, we 
assume that ttrans = 1 s. According to the pre-planned trajec-
tory information, we deduce that a transmission path exists, 
such that 〈(u1, u2, 10, 11), (u2, u3, 23, 24), (u3, g0, 36, 37)〉, which 
means that u1 encounters u2 and transmits m to u2 at position e1
between 10 and 11 s. Then, u2 stores and carries m until it en-
counters u3 and transmits m to u3 at position e2 between 23 and 
24 s, Finally, u3 encounters g0 and transmits m to g0 at position 
e4 between 36 and 37 s.

3.2. TDA model

Similar to prior studies [20,25,26,42,53], we assume that ad-
versaries invade UAVs and use them to launch time-delay attacks, 
maliciously delaying data packet transmission by τ s. Let ts

i
′ denote 

the delayed time when malicious node nodei starts transmitting 
m to nodei+1 and tr

i+1
′ denote the delayed time at which nodei+1

successfully receives m from nodei . In conventional wired networks 
and static WSNs, the TDA model can be formalised as:

ts
i
′ = ts

i + τ , (3)

tr
i+1

′ = tr
i+1 + τ . (4)

However, the above model is not always true for UAV networks 
because of the SCF mechanism. For convenience, we assume that 
each message-holder UAV transmits m to the first UAV it encoun-
ters. Therefore, with no malicious nodes in the network, the trans-
mission path is 〈(u1, u2, 10, 11), (u2, u3, 23, 24), (u3, g0, 36, 37)〉.

Then, we assume that u2 is a malicious node and per-
forms a TDA. When τ = 1 s, the transmission path becomes 
〈(u1, u2, 10, 11), (u2, u3, 24, 25), (u3, g0, 36, 37)〉, which is consis-
tent with the attack model above. Subsequently, when τ = 3 s, 
according to (3), ts

2
′ should be 26 s. However, as illustrated in 

Fig. 1, no UAV can communicate with u2 at 26 s; u2 must store 
and carry m until it encounters u4 at position e3 and transmit m
to u4 after another TDA. Therefore, the transmission path becomes 
〈(u1, u2, 10, 11), (u2, u4, 38, 39), (u4, g0, 53, 54)〉. Here, ts

2
′ = 38 s 

� 26 s. In this case, the TDA changes the original transmission 
path. Moreover, although the duration of the attack is 3 s, the de-
livery delay of m increases by 17 s � 3 s. Therefore, the unique 
characteristics and SCF mechanism of UAV networks make TDAs 
more destructive.
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Fig. 2. Main workflow of our framework (HOTD).
When τ = 10 s, there is no transmission path which can trans-
mit m from u1 to g0. In this situation, a TDA is equivalent to 
a packet-drop attack. However, unlike packet drop attacks, which 
drop the received data packets randomly, TDAs prevent the timely 
delivery of packets. Moreover, TDAs are more covert than packet 
drop attacks, which can be easily detected [24,25].

To summarise, in contrast to conventional wired networks and 
static WSNs, TDA models in UAV networks can be formalised as:

ts
i
′ =

{
ts

i + τ , if τ + ttrans ≤ tdur(i,i+1),

tste(i,i+1)
′ + τ , otherwise,

(5)

tr
i+1

′ = ts
i
′ + ttrans, (6)

where tdur(i,i+1) denotes the duration of encounters between nodei
and nodei+1 and tste(i,i+1)

′ represents the start time of the en-
counter between nodei and nodei+1

′ , where nodei+1
′ is the most 

suitable next-hop node of nodei according to the routing protocol 
[3] and τ + ttrans ≤ tdur(i,i+1)

′ .

4. HOTD

4.1. Main workflow

Fig. 2 shows the main workflow of HOTD, consisting of infor-
mation collection, feature selection, model training, and malicious 
node detection.

4.2. Information collection

To collect delay-related information efficiently in each layer of 
the network, the nodes attach their delay-related information to 
messages while forwarding them. The transmitted message can be 
formalised as:

M =< D, Log1, Log2, . . . , Logi, . . . , Logn+1 >, (7)

Logi =<id, RTi, R Di, R Si, R Bi, RLi, T Pi, L Q i, STi,

S Di, S Si, S Bi >,
(8)

where D is the original payload of message M; Logi denotes the 
transmission log information that nodei attaches to M , including 
the delay-related information of nodei ; RTi (STi ) is the receiving 
(sending) time of nodei ; R Di (S Di ) represents the distance be-
tween nodei and nodei−1 (nodei+1) when nodei receives (sends) 
M; R Si (S Si ) is a vector representing the flight speed of nodei
when it receives (sends) M; R Bi (S Bi ) is the buffer occupancy of 
nodei when it receives (sends) M; RLi is the remaining time to live 
(TTL) of M when received by nodei ; and T Pi and L Q i denote the 
transmission power and link quality, respectively, of nodei .
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Although some delay-related information is attached to the 
message, it remains lightweight in terms of saving. We implement 
a message prototype to further analyse the additional overhead in-
troduced by the message attachment. We use seven bits to encode 
id so that the network can support 27 UAVs. Then, we assume that 
the network performs missions for at most 2 h [37], so RTi , RLi , 
and STi (all units s), can be encoded by 13 bits. Next, we as-
sume that the UAV has seven adjustable power levels, and thus 
T Pi is encoded by three bits. Finally, to precisely reflect the dis-
tance, flight speed, buffer occupancy, and link quality of the com-
munication parties, R Di , R Si , R Bi , L Q i , S Di , S Si , and S Bi are 
encoded by eight bits. Therefore, the transmission log information 
that each forwarding node attaches to the message can be encoded 
by 7 + 13 × 3 + 3 + 8 × 7 = 105 bits ≈ 13 B.

Meanwhile, the experimental results (see Section 5.7) confirm 
the lightweight nature of our collection approach. The extra over-
head does not exceed 2.5% in any situation. Additionally, the costs 
of storage and transmission can be further reduced if efficient 
schemes are adopted. For example, except for the source node that 
records the complete time stamp, other forwarding nodes on the 
transmission path could record only the relative timestamp to re-
duce the extra overhead [32].

4.3. Feature selection

Owing to the complex unique characteristics of UAV networks, 
we must perform a holistic and systematic analysis of delay-related 
information and explore measures that may reveal the misbe-
haviour of attackers.

First, to accurately and efficiently evaluate and identify the be-
haviours of each node in the network, we traverse the transmission 
path of each received m and extract all two-hop sub-paths, which 
can be formalised as

Path ⇒
n⋃

i=2

〈(nodei−1,nodei, ts
i−1, tr

i ), (nodei,nodei+1, ts
i , tr

i+1)〉.

(9)

For example, at 0 s, u1 generates m and wants to send it to 
g0 (see Fig. 1). When there are no malicious nodes in the net-
work, the transmission path is 〈(u1, u2, 10, 11), (u2, u3, 23, 24), 
(u3, g0, 36, 37)〉, as mentioned in Section 3.2. The path can be 
split into 2 two-hop sub-paths: 〈(u1, u2, 10, 11), (u2, u3, 23, 24)〉
and 〈(u2, u3, 23, 24), (u3, g0, 36, 37)〉. Then, for each two-hop sub-
path of m, which can be denoted as 〈(nodei−1, nodei, ts

i−1, t
r
i ), 

(nodei, nodei+1, ts
i , t

r
i+1)〉, we select the delay-related features at 

each layer from a cross-layer perspective to evaluate the behaviour 
and performance of nodei .
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4.3.1. Physical layer
The physical layer is primarily responsible for providing wire-

less communication channels for data transmission. However, ow-
ing to the high dynamics of topology and intermittent connectivity 
of communications, transmitting data packets in UAV networks de-
pends on the dynamic connections between nodes. Moreover, un-
stable link quality significantly affects the forwarding delay, and 
the wireless channel parameters available in this layer reflect the 
link quality. Therefore, the utilisation of information at the phys-
ical layer is beneficial for assessing the current channel state and 
resisting the influence of packet loss and retransmissions on the 
delay.

We chose the signal-to-interference-plus-noise ratio as a repre-
sentation because it considers signal strength as well as interfer-
ence and noise. Moreover, the combination of the transmission dis-
tance between communication parties and other communication-
related information can better reflect the channel state and propa-
gation delay, which is closely related to packet forwarding delay.

Therefore, as listed in Table 1, the final selected features in the 
physical layer are RxDist , SndDist , and L Q , which can be repre-
sented as follows:

P F S = (RxDist, SndDist, L Q ). (10)

4.3.2. MAC layer
The MAC layer is primarily responsible for data error and con-

gestion control. In UAV networks, information related to nodes can 
be obtained at this layer. The selection of delay-related information 
at the MAC layer can effectively resist the influence of congestion 
on the forwarding delay and accurately evaluate the behaviour of 
nodes.

The forwarding delay can be reflected to a certain extent by 
the information at the MAC layer. For example, the buffer occu-
pancy of UAVs reflects their traffic load and the message queuing 
delay. The transmission power of the node reflects the link qual-
ity and communication range of the node, which are related to the 
propagation delay.

Additionally, the utilisation of delay-related information at the 
MAC layer can evaluate node behaviour and help detect TDAs. For 
example, attackers tend to delay rather than immediately forward 
packets when encountering other nodes, regardless of the occu-
pancy of their buffers. This often makes the buffer occupancy of 
attackers higher than that of normal nodes, resulting in inconsis-
tencies with the normal forwarding delay.

As shown in Table 1, the final selected features in the MAC layer 
are RxBu f O cc, SndBu f O cc, Bu f Size, and T xP wr, which can be 
represented as follows: 

M F S = (RxBu f O cc, SndBu f O cc, Bu f Size, T xP wr). (11)

4.3.3. Network layer
The target of the network layer is to provide stable data com-

munication to the nodes. Information used to characterise the 
message and end-to-end transmission path can be obtained here. 
Extracting delay-related features at the network layer helps evalu-
ate forwarding delays and identify malicious nodes. For example, 
the transmission delay (the duration between the first and last 
digits of the message leaving the sending node) depends on the 
message packet size. The utilisation of the message TTL further as-
sists in evaluating the forwarding delay of the node.

Moreover, selecting the source node [20], destination node [53], 
and type of message as features, can better resist and identify vari-
ous TDAs, such as intelligent attacks against these specific features. 
Combining these features with other delay-related features, more 
accurately identifies abnormal behaviours of malicious nodes.
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Table 1
Design features.

Feature Description

ti
sc Estimated duration that nodei stores and carries m

RxSpd Speed of nodei when it receives m from nodei−1
RxDir Direction of nodei when it receives m from nodei−1
SndSpd Speed of nodei when it sends m to nodei+1
SndDir Direction of nodei when it sends m to nodei+1
Msg Size Data packet size of m
RemT T L Remaining time to live of m when nodei receives m from 

nodei−1
Msg Src Source node of m
Msg Dst Destination node of m
MsgT ype Message type of m
RxBu f O cc Buffer occupancy of nodei when it receives m from nodei−1
SndBu f O cc Buffer occupancy of nodei when it sends m to nodei+1
Bu f Size Buffer size of nodei

T xP wr Transmission power of nodei

RxDist Distance between nodei−1 and nodei when nodei receives m
from nodei−1

SndDist Distance between nodei and nodei+1 when nodei sends m to 
nodei+1

L Q Parameters of link quality between nodei and nodei+1 when 
nodei transmits m to nodei+1

Therefore, as shown in Table 1, HOTD selects the final features 
Msg Size, RemT T L, Msg Src, Msg Dst , and MsgT ype, which can be 
represented as:

N F S = (Msg Size, RemT T L, Msg Src, Msg Dst, MsgT ype). (12)

4.3.4. Application layer
The application layer provides services to users and charac-

terises the objective entities of applications. In UAV networks, this 
layer performs analysis and utilisation based on data management 
and processing.

For each two-hop sub-path of m, denoted as 〈(nodei−1, nodei,

ts
i−1, t

r
i ), (nodei, nodei+1, ts

i , t
r
i+1)〉, forwarding delay ti

f d of nodei to 
m can be formalised as

ti
f d = tr

i+1 − ts
i−1. (13)

However, owing to the unique SCF mechanism of UAV networks, 
ti

f d includes the transmission delay and duration for which UAVs 
store and carry the packet. For example, as illustrated in Fig. 1, 
for the two-hop sub-path 〈(u1, u2, 10, 11), (u2, u3, 23, 24)〉, u2 is 
a benign node, t2

f d = 24 s −10 s = 14 s with a 2 s transmission 
delay, and u2 stores and carries the packet for 12 s (from 11 to 23
s).

If we directly use forwarding delay ti
f d as an input for model 

training, the duration for which UAVs store and carry the pack-
ets, ti

sc , greatly affects the performance of the trained consistency 
model. Therefore, to eliminate the adverse impact of this duration, 
we utilise the pre-planned trajectory information obtained at the 
application layer for estimation, and then use it as a feature to 
construct a better consistency model with forwarding delay ti

f d . 
ti

sc is proposed to evaluate the duration that UAVs store and carry 
packets, which is formalised as

ti
sc = tste(i,i+1) − ts

i−1, (14)

where tste(i,i+1) represents the start time of an encounter between 
nodei and nodei+1. For example, as Fig. 1 shows, the start time of 
the encounter between u2 and u3 is 23 s. Therefore, t2

sc = 23 s 
−10 s = 13 s. We then assume that u2 is a malicious node and 
launches a TDA. When τ = 1 s, the corresponding two-hop sub-
path is 〈(u1, u2, 10, 11), (u2, u3, 24, 25)〉, t2

f d = 25 s −10 s = 15 s, 
and t2

sc = 23 s −10 s = 13 s. Additionally, when τ = 3 s, the trans-
mission path becomes 〈(u1, u2, 10, 11), (u2, u4, 38, 39), (u4, g0, 53,
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54)〉. The corresponding two-hop sub-path becomes 〈(u1, u2, 10,

11), (u2, u4, 38, 39)〉, which is different from the original path. 
Here, t2

f d = 39 s −10 s = 29 s � t2
sc . If nodei is an attacker and 

launches a TDA, there are inconsistencies between ti
f d and ti

sc , par-
ticularly when the TDA changes the original path.

Based on the transmission power, we can further utilise the 
flight speed and direction of the UAV to estimate the link qual-
ity and communication range over a period of time [3].

As shown in Table 1, the final selected features in the applica-
tion layer are ti

sc , RxDir, RxSpd, SndDir, and SndSpd, which can 
be represented as:

A F S = (ti
sc, RxDir, RxSpd, SndDir, SndSpd). (15)

Meanwhile, to eliminate the dimensional influence between 
features and further improve the performance of the consistency 
model, we perform feature standardisation (i.e. Z-score normalisa-
tion) [40]:

x′ = x − x̄

σ
, (16)

where x is the original feature vector, x̄ is the mean feature vector, 
and σ is the standard deviation. Feature standardisation is benefi-
cial for avoiding outliers and can increase the difference between 
samples and discrimination between features.

4.4. Model training

We utilised supervised learning to build a consistency model to 
detect TDAs in UAV networks. To obtain sufficient labelled benign 
and malicious samples to train the model before the model train-
ing phase, we injected data packets into the network. Meanwhile, 
some benign nodes were driven to simulate the attack behaviours 
of malicious nodes, which launched a TDA with a set probability. 
Based on the analysis of these injected data packets, we collected 
benign and malicious samples for consistency model training and 
construction.

We traversed the transmission path of each data packet re-
ceived at the ground station and extracted all two-hop sub-paths 
to analyse and identify forwarding behaviour. Then, for each two-
hop sub-path, we selected the delay-related features of forwarding 
node nodei to obtain a training sample z, which can be expressed 
as z = (x, y), where x = (P F S, M F S, N F S, A F S, t f d) and y denotes 
the classification label of x. The forwarding behaviour of nodei was 
benign (0) or malicious (1). After a period of data sampling, we 
obtained the labelled training dataset, including benign and mali-
cious samples, which were used with supervised learning to train 
our consistency model.

4.5. Malicious node detection

After obtaining the trained consistency model, it was used to 
identify malicious nodes and detect TDAs. For each node in the 
network, the forwarding behaviour was evaluated to calculate and 
obtain their degree of consistency. The degree of consistency of 
nodei was formalised as

Ci = bfi

bfi + mfi
, (17)

where bfi and mfi indicate the number of benign and malicious 
forwarding behaviours of nodei , respectively. Ci must be a real 
number between 0 and 1; this was initially set as 0.5, with 
bfi = mfi = 1, indicating complete ignorance in the initial phase.

The process of malicious node detection was as follows: First, 
we analysed each received data packet in the same manner as in 
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Table 2
Default simulation settings.

Scenario 1 Scenario 2

Simulation area (m2) 800 × 800 1200 × 1200
Number of UAVs 13 24
Mobility model MapRouteMovement
Communication range (m) 200
UAV speed (m/s) 6
Message size (Byte) 1400
Link throughput (KB/s) 14
Link quality 1.0
Interval of message creation in each UAV (s) 5
Delay constraint of messages (s) 50
Probability of attack 0.3
Duration of time-delay attack (s) 3
Percentage of malicious nodes 0.3

Note: UAV, unmanned aerial vehicle.

the model training phase. However, all the samples obtained were 
unlabelled. For each unlabelled sample, we determined whether 
the delay-related features of the current forwarding node were 
consistent with the corresponding forwarding delay. If the sam-
ple was marked as consistent, the current forwarding behaviour of 
nodei was benign, and bfi was increased by one; otherwise, it was 
inconsistent and mfi was increased by one. Finally, the degree of 
consistency for each node was obtained and used by the clustering 
method to distinguish malicious from benign nodes. The outputs 
were the benign and malicious node sets.

5. Performance evaluation

In this section, we evaluate and analyse the performance of 
HOTD in an ONE simulator [16].

5.1. Scenarios

We designed two simulation scenarios for UAV networks in-
spired by forest surveillance missions and battlefield networks 
[3,34]. The simulation area, number of UAVs, and deployment loca-
tion of the two scenarios were different. Each UAV was responsible 
for a 200 × 200 m area and used a typical zigzag movement pat-
tern to efficiently cover the region. The UAV flight trajectories were 
planned in advance. UAVs generated data packets as required and 
sent them back to the ground station. The ground station was a 
trusted authority, and there were malicious nodes which launched 
TDAs. Table 2 summarises the default simulation settings.

5.2. Simulation setup

To evaluate the performance of HOTD, we conducted extensive 
experiments on four classical routing protocols for UAV networks: 
epidemic [46], spray-and-wait [41], probabilistic [19], and Max-
Prop routing [4]. Due to the lack of research on TDA detection in 
UAV networks, we compared HOTD with current state-of-the-art 
schemes for TDA detection in CPSs [12] and the PTP [30] (i.e. static 
networks) to demonstrate the uniqueness of TDAs in UAV networks 
and the efficiency of HOTD.

We used the advanced deep learning-based method to charac-
terise and detect TDAs in CPSs [12], as discussed in Section 2.2.
The hierarchical long short-term memory (LSTM) model is a data-
driven approach for processing a continuous stream of data and 
characterising an attack. Subsequently, a deep learning model was 
utilised as the classification module to detect attacks. Because the 
method was independent of the position of the attack, we individ-
ually identified each UAV node. Meanwhile, because the method 
was an online detection method, we set the reaction latency as the 
end time of the experiment to ensure fairness; that is, the method 
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Fig. 3. Impact of different algorithm combinations on detection accuracy in Scenario 1.
only needed to identify malicious nodes by the end of the experi-
ment. All other parameters used were default values from [12].

Based on their prior work [29], the authors in [30] performed 
a comprehensive analysis and summary of the TDA surface in the 
PTP, and then modelled and quantified the effect of TDAs. Based 
on the assumption of symmetry in the communication path be-
tween the primary and secondary clocks in the PTP, the method 
accurately modelled the delay characteristics and detects TDAs by 
observing and calculating the offset between the primary and sec-
ondary clocks. We used this method to characterise and detect 
TDAs in the PTP.

5.3. Metrics

To measure and compare the detection performance, an error 
matrix was used, in which true positive (TP) and true negative 
(TN) represent correct detections of a TDA, and false negative (FN) 
and false positive (FP) are incorrect detections. The sensitivity and 
specificity of the method correspond to avoiding the false-positive 
rate (FPR) and false-negative rate (FNR), respectively. We define the 
accuracy rate as ACC = (T P + T N)/(T P + F P + F N + T N), FPR as 
F P R = F P/(F P +T N), and FNR as F N R = F N/(F N +T P ). To avoid 
bias, each experiment was simulated for 100 rounds and the aver-
age value was used as the final result.

5.4. Algorithm combination comparison

The performance of HOTD relies on a combination of the super-
vised learning and clustering algorithms. Therefore, we conducted 
experiments to study the detection accuracy of different algorithm 
combinations under HOTD on TDAs in UAV networks. We chose 
four typical supervised learning algorithms: SVM [48], multilayer 
perceptron (MLP) [1], convolutional neural network (CNN) [7], and 
RNN [45]; and four classical clustering algorithms: K-means [38], 
agglomerative nesting hierarchical (AGNES) [43], Gaussian mixed 
model (GMM) [58], and spectral clustering [54].

The MLP model included one input, one fully connected layer 
(with 10 hidden neurones), and one output layer. The CNN model 
consisted of two 1D-CNNs (filters = 64 and 128, kernel size = 4), 
one flattened layer, one fully connected layer (with 256 hidden 
neurones, activation function = rectified linear unit), one dropout 
layer (dropout rate = 0.5), and one fully connected layer (activation 
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function = SoftMax). The RNN model was composed of one gated 
recurrent unit and one fully connected layer.

The experimental results are presented in Figs. 3 and 4. We 
found that the performance of the CNN + GMM algorithm was bet-
ter than the other algorithm combinations. Owing to the shared 
convolution kernel, CNN can handle high-dimensional data, and 
has been proven to effectively detect malicious nodes in WSNs 
[17,47]. The convolutional layer of CNN can automatically per-
form feature extraction, which makes CNN suitable for UAV net-
works with complex architectures and many delay-related fea-
tures. Meanwhile, weight sharing between the convolutional layers 
decreases the number of training parameters, which greatly re-
duces the complexity of the network structure and makes CNN 
more applicable. Additionally, the fully connected layer of CNN 
alleviates overfitting, while decreasing the loss of feature infor-
mation. Simultaneously, GMM clustering considers both the mean 
and variance of the data and uses the expectation-maximisation 
(EM) algorithm to iteratively update the model parameters, thereby 
achieving higher accuracy. Furthermore, GMM adopts a probabilis-
tic model (soft classification), which provides more flexibility than 
other clustering methods.

All the algorithm combinations achieved a good detection per-
formance (over 90%) in two scenarios and four routing protocols, 
which indicates the wide applicability of HOTD. Owing to the 
space limitations of this study, we chose algorithm CNN + GMM 
to represent HOTD for the following experiments.

5.5. Detection performance comparison

We evaluated our proposed HOTD against current state-of-the-
art schemes for TDA detection in CPSs [12] and the PTP [30], and 
the results are listed in Table 3. HOTD always achieved good ac-
curacy (over 95%) while maintaining low FPR and low FNR (below 
10%). In TDA scenarios for UAV networks, HOTD’s performance is 
far superior to that of detection methods for CPSs and the PTP. The 
reasons for this are as follows. First, because of the complex archi-
tecture of UAV networks, HOTD performs a holistic analysis of the 
information available at each layer of the UAV network protocol, 
and then extracts the delay-related features from a cross-layer per-
spective, enabling a comprehensive and accurate characterisation 
of TDAs. Second, a consistency model between these features and 
the corresponding forwarding delay is constructed to effectively 
evaluate the forwarding behaviour of each node in the network. 
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Fig. 4. Impact of different algorithm combinations on detection accuracy in Scenario 2.

Table 3
Results of different detection schemes.

Scenario 1 Scenario 2
(Router) (Router)

Epidemic Spray and Wait Prophet MaxProp Epidemic Spray and Wait Prophet MaxProp

HOTD (proposed)
ACC 0.9923 0.9885 0.9911 0.9712 0.9642 0.9771 0.9732 0.9565
FPR 0.0094 0.0211 0.0132 0.0277 0.0357 0.0206 0.0223 0.0613
FNR 0.0076 0.0393 0.0178 0.0293 0.0368 0.0329 0.0532 0.0542

Ganesh et al. [12]
ACC 0.9724 0.9224 0.8149 0.8506 0.6616 0.7523 0.5457 0.6071
FPR 0.0322 0.0557 0.1538 0.2442 0.5782 0.3596 0.6513 0.6663
FNR 0.0193 0.1081 0.2746 0.0186 0.0751 0.0156 0.1398 0.0663

Moussa et al. [30]
ACC 0.5352 0.5035 0.5773 0.5100 0.5047 0.5651 0.5758 0.4994
FPR 0.3857 0.4509 0.3150 0.4718 0.5139 0.3381 0.3111 0.5381
FNR 0.6124 0.5654 0.6908 0.5181 0.4755 0.6563 0.6825 0.4602

Note: ACC, accuracy; FPR, false positive ratio; FNR, false negative ratio.
Third, the degree of consistency of each node can be calculated 
based on the forwarding behaviour evaluation of each node. HOTD 
then utilises a clustering algorithm to classify nodes, which miti-
gates the impact of evaluation bias on the overall results.

As shown in Table 3, the method for CPSs [12] performs well in 
scenario 1, but the performance drops sharply in scenario 2. There-
fore, the CPS TDA detection method has poor scalability under 
highly dynamic and complex UAV networks. Moreover, it cannot 
adapt to large-scale and increasingly complex UAV networks in 
real-world environments. We found that the FNR of this method 
was low and FPR was very high, showing that although the method 
rarely misses malicious nodes, it simultaneously misjudges nu-
merous benign nodes. This causes many false alarms, which are 
very troublesome in practical applications. In CPSs, the transmis-
sion paths of packets are fixed and the data of each node are se-
quential and continuous. Therefore, the method uses LSTM, which 
accurately captures the dependencies and features in the time se-
ries to detect TDAs. However, owing to the characteristics of UAV 
networks, the transmission paths of packets change dynamically. 
Meanwhile, the transmitted packets for each node are discontinu-
ous, the time interval of each packet transmission is not fixed, and 
there is no close correlation between adjacent packets. Therefore, 
LSTM cannot learn an effective pattern for identifying malicious 
nodes in UAV networks.

The detection method for TDAs in the PTP is inapplicable in 
UAV networks, as shown in Table 3. Under the four routing pro-
tocols in the two scenarios, the detection accuracy of the method 
124
in [30] was approximately 50%. Meanwhile, the FPR and FNR were 
as high as 50% in most cases. Therefore, the method cannot dis-
criminate TDAs in UAV networks because the PTP assumes that the 
communication path between the primary and secondary nodes is 
symmetrical. The existing methods all rely on this assumption, but 
it does not hold in UAV networks because of the highly dynamic 
topology. Additionally, because the structure of the PTP is relatively 
simple and only relates to time characteristics, the method extracts 
and processes information related to the delay without considering 
other factors. However, owing to the complex architecture of UAV 
networks, many factors can influence the forwarding delay, and it 
is difficult to model this relationship.

5.6. Influence of different features

We then investigated the influence of different features on de-
tection accuracy. We conducted extensive experiments on differ-
ent feature combinations in two scenarios, four routing protocols, 
and three network overheads. Owing to space limitations, we only 
show the accuracy results for the following five key combinations 
in Table 4.

1. Combination 1: All features at different layers, as shown in 
Table 1.

2. Combination 2: Features at the physical, network, and applica-
tion layers.
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Table 4
Accuracy results of different feature combinations.

Scenario 1 Scenario 2

Router Combination Light Moderate Heavy Light Moderate Heavy

Epidemic

1 0.9976 0.9795 0.9113 0.9697 0.9579 0.9166
2 0.9943 0.9770 0.8188 0.9528 0.8963 0.8435
3 0.9849 0.9013 0.8817 0.9499 0.9304 0.8877
4 0.7626 0.8127 0.7721 0.8691 0.7554 0.6945
5 0.9912 0.9768 0.8832 0.9554 0.9222 0.8782

Spray and Wait

1 0.9955 0.9810 0.9431 0.9828 0.9664 0.9487
2 0.9898 0.9732 0.9106 0.9775 0.9594 0.8655
3 0.8860 0.9051 0.9266 0.9013 0.9040 0.9440
4 0.6748 0.8161 0.8456 0.8157 0.8204 0.8072
5 0.9787 0.9676 0.9097 0.9754 0.9565 0.9305

Prophet

1 0.9912 0.9911 0.9245 0.9740 0.9732 0.9570
2 0.9854 0.9830 0.8730 0.9705 0.9573 0.9077
3 0.9374 0.9608 0.9116 0.9501 0.9293 0.9438
4 0.7789 0.8314 0.8085 0.7881 0.6963 0.8518
5 0.9864 0.9737 0.8886 0.9487 0.9627 0.9466

MaxProp

1 0.9920 0.9364 0.9059 0.9678 0.9565 0.9605
2 0.9889 0.9011 0.8751 0.9286 0.8677 0.9091
3 0.9472 0.9023 0.8885 0.9193 0.9257 0.9517
4 0.7636 0.8215 0.7707 0.7602 0.7777 0.8949
5 0.9889 0.9193 0.8703 0.9452 0.9007 0.9394
3. Combination 3: Features at the physical, MAC, and network 
layers.

4. Combination 4: Features at the physical and network layers.
5. Combination 5: L Q at the physical layer; RxBu f O cc,

SndBu f O cc, and Bu f Size at the MAC layer; Msg Size, Msg Src, 
Msg Dst , and MsgT ype at the network layer; and ti

sc at the ap-
plication layer.

5.6.1. Complementarities and synergies
In this section, we focus on the contribution of different fea-

tures to detection accuracy, and combinations 1-4 are chosen as 
representative results.

The physical and network layers form the basis for UAV net-
work communication; therefore, the utilisation of features in these 
layers (combination 4) achieves a certain detection accuracy. We 
found that features at the MAC and application layers are benefi-
cial for detecting TDAs in different environments. The MAC layer is 
primarily responsible for data error and congestion control, and 
the application layer performs a further process and utilisation 
of data. Therefore, on the basis of the physical and network lay-
ers, further utilisation of features at the MAC layer (combination 
3) can better handle large-scale or heavy-load UAV networks. We 
utilised the pre-planned trajectory information, which can be ob-
tained at the application layer, to estimate the duration that UAVs 
store and carry the packet and eliminate its adverse impact. When 
the network load is light, trajectory information can be analysed 
and utilised more accurately. Thus, the consistency model is better 
established and the detection accuracy is improved (combination 
2). Finally, considering the features at all layers (combination 1) 
achieves the best detection accuracy in all situations.

In summary, features at different layers have their own advan-
tages and disadvantages, and all contribute to the detection accu-
racy. Through holistic collection, selection, and utilisation of infor-
mation at all layers from a cross-layer perspective, HOTD achieves 
complementarities and synergies between features and is thereby 
able to deal with TDAs in different environments.

5.6.2. Trade-off between overhead and accuracy
HOTD uses message attachment for information collection, 

which inevitably increases the network overhead. Therefore, we 
explored the trade-off between the extra overhead and detection 
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accuracy. We chose to minimise the extra overhead while sac-
rificing a small amount of detection accuracy. To this end, we 
conducted extensive experiments, and because of space limitations, 
we only present the final experimental results.

As shown in Table 4, combination 5 achieved a better detection 
accuracy than combination 1, while greatly reducing the additional 
overhead. The extra overhead introduced by combination 5 was 
7 + 13 + 13 + 8 + 8 + 8 = 57 bits, which was only 54% of that 
of combination 1 (105 bits). However, the decrease in the detec-
tion accuracy of combination 5 was within 6% of combination 1. 
Therefore, HOTD effectively achieves a good trade-off between ex-
tra overhead and detection accuracy.

5.7. Overhead analysis

In UAV networks, storage and computing resources are rela-
tively sufficient; however, there are low communication resources 
[3]. Therefore, we conducted experiments to investigate the extra 
overhead ratio introduced by the transmission of collected infor-
mation, which can be defined as

E O R =
∑N

i=1
∑Hi

j=1 j × Ai∑N
i=1 Di × Hi

, (18)

where N is the number of transmitted messages, Di is the size of 
the original payload of message Mi , Hi is the hop count to de-
liver Mi to the destination, and Ai is the size of the information 
that each forwarding node attaches to Mi . We set, Ai = 105 bits 
and Di = 1400 B (see Table 2). Table 5 lists the results for the 
two scenarios and four routing protocols. The extra overhead ra-
tio introduced by HOTD was very small (under 2.5%) in all cases, 
indicating feasibility and practicability.

5.8. Impact of different variables

In the following experiments, we studied the impact of different 
variables on detection accuracy.

5.8.1. Impact of TDA duration
We studied the impact of TDA duration on detection accuracy, 

including absolute and relative TDAs. The experimental results are 
presented in Figs. 5 and 6.
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Table 5
Extra overhead ratio.

Epidemic Router Spray-and-Wait Router Prophet Router MaxProp Router

Scenario 1 2.28% 1.80% 1.86% 2.30%
Scenario 2 2.21% 1.78% 1.82% 2.17%

Fig. 5. Impact of duration of absolute time-delay attack on detection accuracy. (a) Scenario 1. (b) Scenario 2.

Fig. 6. Impact of duration of relative time-delay attack on detection accuracy. (a) Scenario 1. (b) Scenario 2.
The detection accuracy improved as the absolute TDA duration 
increased (see Fig. 5) due to the increased TDA duration leading 
to obvious inconsistencies between the delay-related features and 
corresponding forwarding delay based on the trained consistency 
model, thereby exposing the malicious behaviour of the node.

Moreover, to further study the performance of HOTD, we de-
signed a more covert relative TDA. The relative TDA duration de-
pends on the transmission duration of messages (i.e. one-quarter, 
one-half, one-time, two-times and four-times). The experimental 
results showed that the detection accuracy of HOTD was higher 
than 91% in the two scenarios and four routing protocols, as shown 
in Fig. 6. This is because we performed a holistic collection, extrac-
tion, and selection of delay-related information at different layers 
from a cross-layer perspective, and the trained consistency model 
could handle TDAs in different environments.

5.8.2. Impact of TDA probability
As shown in Fig. 7, the detection accuracy dropped slightly as 

the attack probability increased because more TDAs led to more 
complex network conditions, making it difficult to accurately ex-
tract delay-related information. However, the detection accuracy of 
HOTD remained above 92% in all situations.

Furthermore, the detection accuracies of spray-and-wait and 
probabilistic routing were better than those of epidemic and Max-
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Prop routing in most situations because both epidemic and Max-
Prop routing are based on natural flooding. The load of all nodes 
on these two routing protocols increased, whether they were ma-
licious or benign, resulting in a decreased influence of the MAC 
layer features on accuracy. 

5.8.3. Impact of percentage of malicious nodes
The detection accuracy of HOTD was over 90% in most situa-

tions (see Fig. 8), and as the percentage of malicious nodes in-
creased, the detection accuracy decreased. Overall, the experimen-
tal results were similar to those of TDA probability. However, the 
percentage of malicious nodes had a greater impact on detection 
accuracy than TDA probability because increasing the percentage of 
malicious nodes in the UAV network adversely affected the neigh-
bouring nodes more widely than increasing the probability of a 
TDA, thereby quickly and comprehensively degrading the overall 
performance of the network.

5.8.4. Impact of link quality
As depicted in Fig. 9, when the link quality improved, the detec-

tion accuracy of HOTD generally increased, because when the link 
quality is poor, there are numerous data packet losses and retrans-
missions, which wastes a significant amount of time and causes 
an increased network load. This poor network environment causes 
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Fig. 7. Impact of attack probability on detection accuracy. (a) Scenario 1. (b) Scenario 2.

Fig. 8. Impact of percentage of malicious nodes on detection accuracy. (a) Scenario 1. (b) Scenario 2.

Fig. 9. Impact of link quality on detection accuracy. (a) Scenario 1. (b) Scenario 2.
abnormalities in the forwarding behaviours of the nodes and ab-
normal fluctuations in the delay of messages, which increases the 
difficulty of TDA detection. However, the detection accuracy of 
HOTD was above 94% in all situations.

5.8.5. Impact of message creation interval
We investigated the impact of the message creation interval on 

the detection accuracy by keeping the total number of injected 
data packets the same at different intervals. The performance re-
sults of HOTD are shown in Fig. 10. The detection accuracy of 
HOTD was over 91% in all situations. Moreover, as the message 
creation interval increased, so did the detection accuracy, because 
network load decreases when the message creation interval in-
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creases. Therefore, accurately collecting the delay-related informa-
tion of each forwarding node improves the detection accuracy.

6. Conclusion

The rapid development and widespread application of UAV net-
works has resulted in them being vulnerable to internal attacks, 
such as TDAs, which are easy to implement and difficult to de-
tect. Moreover, the unique characteristics of UAV networks greatly 
increase the concealment and destructiveness of TDAs. Therefore, 
there is an urgent need to design efficient mechanisms for accu-
rate detection. However, no research has been conducted on TDA 
detection in UAV networks.
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Fig. 10. Impact of message creation interval on detection accuracy. (a) Scenario 1. (b) Scenario 2.
In this paper, we provided a comprehensive and in-depth anal-
ysis of TDAs in UAV networks and proposed HOTD. First, we per-
formed a holistic selection of the delay-related features at each 
layer of the UAV network. Supervised learning was then used to 
construct a consistency model between these selected features and 
the corresponding forwarding delay; based on which, the degree 
of consistency of each node was calculated. Finally, the clustering 
method was utilised to distinguish malicious from benign nodes 
according to their degree of consistency. Through extensive ex-
periments, we demonstrated that the performance of HOTD was 
far superior to that of state-of-the-art detection methods. HOTD 
achieved a detection accuracy above 85%, with less than 2.5% ex-
tra overhead in various UAV network settings and different routing 
protocols.
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