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a b s t r a c t

Data collection with mobile agent (MA) can balance the energy consumption of nodes in partitioned
wireless sensor networks. However, the existing data collection algorithms for partitioned WSNs do
not formalize the problem systematically. These algorithms are not efficient and difficult to meet the
timeliness requirement. In order to solve the above shortcomings, we first formalize the Data Collection
Problem (DCP). Then, it is transformed into a Generalized Traveling Salesman Problem (GTSP), and we
propose a GTSP-Based data collection Algorithm (GBA) to calculate the rendezvous points (RPs) and
the moving path of MA. GBA selects RPs by solving the GTSP problem. Furthermore, based on GBA, we
take advantage of constructing convex hull to plan a more efficient moving path for MA. In addition,
in order to reduce the energy burden on the RPs, we design an Improved Shortest Path tree (ISP tree)
to aggregate data from nodes to RPs in partitioned WSNs. Finally, extensive simulations demonstrate
the effectiveness and advantages of our algorithm in terms of the length of MA’s moving path and the
amount of data collection per unit time.

© 2022 Published by Elsevier B.V.
1. Introduction

Wireless Sensor Networks (WSNs) are the core component
f the Internet of Things (IoT) [1–3]. They consist of multiple
ensor nodes which are deployed in some areas to perform mon-
toring tasks and collect data. In recent years, WSNs have been
sed for air quality monitoring, water quality monitoring, smart
ransportation, smart agriculture, smart living [4–7], etc.

The core function of WSNs is to collect data from the moni-
ored area. Many effective data collection algorithms have been
roposed in recent years [8–11]. However, they are much con-
erned about connected WSNs, in which all nodes are directly
r indirectly connected to each other. Due to the influence of
he natural environment and topography, many large-scale WSNs
re disconnected [12]. For example, the WSN shown in Fig. 1 is
ot fully connected, but is composed of multiple sub-WSN(Here
fter, we use s-WSN to denote sub-WSN), and all the nodes in
ach s-WSN are fully connected. In this paper, we call this kind
f wireless sensor networks partitioned WSNs.
When collecting data from partitioned WSNs, a feasible man-

er is to deploy one static sink in each s-WSN and arrange a base
tation in the partitioned WSNs. Each node in s-WSN sends the
ensing data to the sink in the s-WSN through multi-hop routing,
hen the sink sends the data to the base station for processing.

∗ Corresponding author.
E-mail address: liangliu@nuaa.edu.cn (L. Liu).
ttps://doi.org/10.1016/j.future.2022.09.006
167-739X/© 2022 Published by Elsevier B.V.
This data collection method has two main disadvantages: (1) It
introduces additional hardware overhead because of arranging a
base station in for communication with the sink deployed in each
s-WSN [13]. (2) The nodes closer to the sinks have to bear the
data forwarding of the nodes farther away from the sinks while
forwarding their own data, which results in unbalanced energy
consumption of the nodes closer to the sinks. This phenomenon
is called ‘‘energy hole’’ effect, which shortens the lifetime of the
network [14,15].

To solve the above problems, many researchers introduce
mobile agent(MA) to collect data in partitioned WSNs [16,17]. The
nodes in each s-WSN send the sensing data to the rendezvous
points(RPs) in the s-WSN. Then, MA visits the RPs in each s-WSN
to collect data in the RPs. After visiting all RPs in all s-WSN, MA
returns to the base station with data.

When using MA to collect data from partitioned WSNs, a key
problem is how to collect data as fast as possible. Because the
sensing data of nodes is usually time-sensitive [18,19], it is crucial
to collect data from the networks timely. The time used by MA for
a complete travel is related to the length of travel path. Therefore,
how to select RPs and plan an efficient moving path for MA is a
critical issue.

The data collection algorithms for connected WSNs cannot be
used in partitioned WSNs directly. Moreover, the existing data
collection algorithms for partitioned WSNs do not formalize the
problem systematically. They usually select RPs firstly, and then
use heuristic algorithms to find a moving path for MA to traverse

https://doi.org/10.1016/j.future.2022.09.006
https://www.elsevier.com/locate/fgcs
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Fig. 1. Partitioned wireless sensor network.

the RPs. These algorithms are not efficient and difficult to meet
the timeliness requirement.

In order to solve the above problems, we propose an Efficient
Data collection Algorithm(EDA) for partitioned WSNs. First, we
formalize the data collection problem as a generalized traveling
salesman problem (GTSP [20,21]). Unlike the traditional algo-
rithms which divide the selection of RPs and planning the moving
path for MA into two steps, this paper combines the selection of
RPs and obtaining the moving path of MA into one step by solving
the GTSP problem.

The main contributions of this paper are outlined follows. (1)
We formalize the Data Collection Problem(DCP) systematically.
(2) DCP is transformed into a GTSP problem, and we propose a
GTSP-Based data collection Algorithm(GBA). The RPs and moving
path of MA are obtained simultaneously by solving the GTSP
problem. (3) Based on GBA, we consider the effect of node’s
communication range on the moving path of MA and propose an
Efficient Path Planning Algorithm(EPPA) to plan an more effective
moving path for MA. (4) Extensive simulations demonstrate the
effectiveness and superiority of our proposed algorithm in terms
of the length of MA’s moving path and the amount of data
collected per unit time.

We summarize this paper as follows. Section 2 describes the
work related to data collection in WSNs. The system model and
the DCP problem are illustrated in Section 3. Section 4 describes
the transformation and solution of the DCP problem. In Section 5,
we conduct experiments and evaluate the proposed algorithm
through experimental results. Finally, the paper is summarized
in Section 6.

2. Related work

In recent years, many researchers have proposed many al-
gorithms for data collection in WSNs. These works are broadly
classified into three categories. (1) how to use the MA to collect
data directly from each sensor. (2) how to schedule the MA to
travel the RPs.

2.1. Using the MA to access each sensor

Several studies use m mobile ferries to collect data from sen-
sors. The work in [22] divides the entire sensor network into
m grids and assigns a ferry to visit the sensors in each grid. In
addition, some contact points are chosen at the grid boundaries
so that two ferries meet together. In [23], a path planning method
is developed for the ferry. The method selects a contact point and
cuts the network into m regions that intersect at that point. Each
ferry finds a Hamiltonian cycle to visit all sensors and contact
points in a region.

A hybrid WSN is considered in [24], which static sensors
are responsible for detecting events and generating data, while
54
mobile sensors moving to event locations to collect data. Since
mobile sensors have limited energy, the goal of the paper is to
extend their lifetime by scheduling them round by round. The
event site is divided into clusters, and [24] assigns a mobile
sensor to each cluster, which not only considers reducing the
travel path of the mobile sensors, but also balances their energy
consumption. The mobile sensor then uses the TSP method to
access each node in the cluster.

Given a set of sparsely dispersed sensors, some studies arrange
the travel paths of mobile agents to collect data from sensor
nodes with the goal of minimizing the path length. The study
in [25] assumes that the sensors have different communication
ranges and once the mobile sink (MS) enters the sensor’s commu-
nication range, it can obtain data from the sensors. Therefore, [25]
uses an evolutionary algorithm to find the contact points on
the boundary of each sensor communication range and connects
these points through a TSP approach, thus reducing the overall
path. The work of [26] is similar to [25] which also finds the
contact points from the boundary of the communication range,
but it eliminates some redundant points (e.g., visiting the same
sensor multiple times). The travel path is further shortened by
this approach.

The study in [27] assumes that the speed of the MS is tunable,
and the goal is to arrange the travel path of the MS while varying
its speed along the path so that the MS can collect data from each
sensor in the shortest possible time. [28] used an incremental
strategy to compute travel path with delay constraints. They first
use the TSP method to find the paths that access all sensors. By
modeling the communication range of the sensors as disks, the
Welzl method [29] is then used to find the smallest closed disk
on the path. In this way, the path is reduced because when the
MS is located within the overlapping area of the communication
range of multiple sensors, it can collect data from these sensors.

When there are many sensors, accessing each node makes the
travel path longer. Therefore, the above schemes may not perform
well in a large-scale WSN.

2.2. Scheduling the MA to travel the RPs

Both [30,31] assume that a MS keeps moving along a fixed pre-
planning trajectory and sensors are scattered around the path of
the MS. When a sensor lies within the communication range of
the MS, it becomes a RP and other sensor nodes forward data to
this RP via multiple-hop routing.

Several studies use a tree connecting all sensors to find the
set of travel paths and RPs. [32] forms a minimal Steiner tree
and traverses it in a pre-ordered manner until the MS moves to
visit the RPs over the delay threshold. Since the Steiner tree may
have virtual vertices (i.e., they do not correspond to sensors), [32]
replaces RPs that may be virtual vertices with the closest sensors.
However, this approach may result in longer data forwarding
paths for some non-RP sensors, therefore, it will force sensors to
spend more energy on communication. Xing et al. [33] create a
routing tree in a WSN and assign a weight to each tree edge based
on the number of sensors that use the tree edge to forward data.
Then, the MS selects the edge with a larger weight under a delay
constraint. Since the MS will move along the tree edges, some RPs
may be visited multiple times. Therefore, [33] iteratively corrects
the travel path by the TSP method. However, the TSP method is
invoked n∗RP times in each iteration, so the scheme incurs a high
computational overhead.

The work in [34] proposes a cluster-based (CB) approach to
find RPs. It randomly selects some sensors as heads of clusters,
and other sensors which are closest to the heads will join the
clusters. Then, one RP is selected from each cluster. if the travel
path used to access all RPs is shorter than the threshold L , the
max
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Table 1
Table of related work.
No. Algorithm Hol-Opt

21 Ferry route design algorithms No
22 Centralized ferry relaying No
23 Centralized and a distributed heuristics No
24 TSPN No
25 Substitution heuristic algorithm No
26 Heuristic algorithm No
27 MR-CSS No
28 Seidel’s recent linear programming algorithm No
29,30 Selection of RPs algorithm No
31 Rendezvous-based data collection algorithm No
32 RP-CP and RP-UG No
33 Cluster-based algorithm No
34 Weighted rendezvous planning algorithm No

Fig. 2. Network model.

B adds more cluster heads and repeats the procedure. However,
ince cluster heads are chosen randomly, some clusters may have
ore sensors, which makes their sensors spend more energy on
ommunication. In [35], a weighted rendezvous planning (WRP)
cheme is proposed by forming a spanning tree in a WSN. Each
ensor si is assigned a weight Wi = Ni ∗ H(i,M),where Ni is the
umber of packets sent by si to the RP and H(i,M) is the number
f hops between si and its nearest RP. Since WRP assumes that
ach sensor generates one sensing packet, Ni is the number of
hildren of si plus 1. Then, WRP selects an RP with the maximum
eight and uses the TSP method to schedule the paths to visit
ach RP. The iterations are repeated until the path length exceeds
max. However, since it uses the TSP method to recalculate the
aths (including the newly discovered paths) to visit the RPs in
ach iteration, the time complexity of WRP is O(n2γ ), which is
igher than [33].
Finally, We have organized the papers involved in the related

ork into Table 1. In Table 1, we summarize the related algo-
ithms in detail, as well as the limitation of them. The limitation
f these algorithms is no holistic optimization. No holistic opti-
ization means the selection of RPs and planning moving path for
A are two separate steps. We use Hol-Opt to represent holistic
ptimization in Table 1.

. Network model and problem statement

.1. Network model

Consider a set of sensor nodes S = {s1, s2, . . . , sn} distributed

n an area randomly, these nodes form a partitioned WSNs,

55
namely PN , as shown in Fig. 2. PN consists of K sub-network
Ni(1 ≤ i ≤ K ). Each SNi has several nodes. ∀si, sj ∈ SNk, they
an communicate with each other directly or indirectly. While
si ∈ SNk,∀sj ∈ SNh, they cannot communicate with each other.
ach sensor node generates a data packet of size l bits during a
ime interval T .

In a round of data collection, Each node in SNi sends data to
he RP in SNi. MA visits the RP in SNi one by one from the starting
oint, and collects data in the RP. The process of data collection
nds after visiting all SNi, the time used for this process is denoted
s Ttour .
We adapt the following assumptions proposed in [35]. First,
e use only one MA to collect data. Second, MA visits the RPs

t a constant speed v. Third, the communication time of data
athering can be neglected compared with the traveling time of
A. Finally, in practical applications, the number of sub-networks
hould be less than a specific constant C0, i.e., K < C0 [12].

.2. Energy consumption model

The typical energy consumption model for wireless transmis-
ion in [34] is adopted in our study. For two interconnected nodes
i and sj with Euclidean distance d(si, sj), when si sends y bits of
ata to sj, the energy consumed by si sending the data is

T (si, sj) = γ1y+ γ2d(si, sj)ϵy (1)

nd the energy consumed by sj receiving the data is

R(sj, si) = γ1y (2)

here γ1 is the energy used by the transmitter electronics, γ2 is
he transmitting amplifier, and ϵ is the propagation loss index sat-
sfying 2 < ϵ < 4. The values of amplifier γ2 and ϵ are determined
y the actual situation.

.3. Problem statement

In this subsection, we formalize the data collection prob-
em(DCP) in partitioned WSNs. Our work is to first find a set of
ensor nodes SNrp to become RPs. SNrp = (m1,m2, . . . ,mk, . . . ,

K ), where mk ∈ SNk, 1 ≤ k ≤ K . Each node in SNk sends its data
o mk. Then find an efficient path Pma for MA to visit these RPs.
ma = (ni1 → ni2 → ... → niK → ni1 ), where nik is a location
ear the RP mik , 1 ≤ ik ≤ K . MA moves to nik to collect the data
n mik . The length of Pma is denoted as LPma , the time used for this
rocess is denoted as TPma . Our overall goal is to make the amount
f data collected by MA per unit time as much as possible. DCP is
ormalized as follows:

ax
∑K

i=1 Li
TPma

(3)

Li = |SNi|l (4)

TPma =
LPma

v
(5)

s.t.

LPma ≤ Tv (6)

d(mik , nik ) ≤ r (7)

where |SNi| represents the number of nodes in SNi, Li represents
the total amount of data collected by MA in SNi. TPma represents
the time used by MA to complete one round of data collection.
T in Eq. (6) is an upper bound on the data delivery delay, and v
is the constant travel speed of MA. Eq. (7) guarantees that MA is
within the communication range of the RPs to be traversed.
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. Design of the algorithm

.1. Main challenges of DCP

The total time TPma for MA to complete a round of data collec-
ion task depends on the selection of RPs and the moving path
f MA. The shorter the moving path of MA will cause the smaller
Pma and the more data collected per unit time. Therefore, there
re two challenges in solving the DCP problem: (1) how to select
uitable RPs; (2) how to plan an efficient moving path for MA to
raverse the RPs.

To address the above challenges, we convert the selection of
Ps and the planning MA’s moving path into a GTSP problem, and
ropose a GTSP-Based data collection Algorithm(GBA). The RPs
nd moving path of MA are obtained simultaneously by solving
he GTSP problem. According to the moving path of MA obtained
y solving GTSP, MA moves directly to the location of the RPs to
ollect data.
However, in fact, MA only needs to move within the commu-

ication range of a RP to collect data from the RP. Therefore, after
btaining the RPs by using GBA, we propose an efficient path
lanning algorithm(EPPA). EPPA uses the convex hull generation
lgorithm to plan a shorter moving path for MA. And in EPPA, MA
oes not need to move to the location of the RPs.
Finally, in order to aggregate the data of the nodes in SNi to

he corresponding RP, we construct an Improved Shortest Path
ree(ISP tree) with a virtual root for each SNi(1 ≤ i ≤ K ). GBA and
PPA aim at reducing the length of the moving path of MA, while
he ISP tree reduces the energy consumption during collecting
he data from the nodes in SNi. In the following sections, we will
ntroduce GBA, EPPA and the ISP tree in detail.

.2. GBA

The selection of RPs and planning moving path for MA are
wo separate steps in traditional data collection algorithms. They
irst select RPs by clustering according to node distance, node
ensity, etc [32–34]. Then, the visiting of RPs are transformed
nto a TSP problem to obtain the moving path of MA. Such
lgorithms narrow the solution space of suitable RPs and moving
aths of MA, which undoubtedly omit many feasible and efficient
olutions.
In order to avoid the above shortcomings, we combine select-

ng RPs and planning moving path for MA into one step. For each
ub-network SNi(1 ≤ i ≤ K ), MA needs to traverse one node in
ach SNi and traverse this node only once. The optimization goal
s to minimize the length of MA’s traversal path. This is essentially
GTSP problem. The node being traversed in each SNi(1 ≤ i ≤ K )

is essentially the RP of SNi. Therefore, we found that selecting
RPs and finding MA’s moving path can be translated into a GTSP
problem.

The GTSP problem is a typical NP-hard problem [36]. We
use multiple heuristic algorithms proposed in [36–39] to find
suitable RPs and efficient moving path of MA, including Ant
Colony optimization (ACO), Genetic Algorithm (GA), Simulated
Annealing (SA) and Tabu search (Tabu). The proposed algorithms
based on ACO, GA, SA and Tabu are shown in Algorithm 1, 2, 3, 4
respectively.

Due to space limitations, we take Algorithm 2 as an example
to illustrate how to calculate the RPs and the moving path of MA
using GA. There are ni sensor nodes in each SNi(1 ≤ i ≤ K ).
We use sim,jim to represent the sensor node numbered jim in SNim ,
where 1 ≤ im ≤ K , and 1 ≤ jim ≤ nim . The traversal path to
visit RPs is represented as [si1,ji1

→ si2,ji2
→ · · · → siK ,jiK

→

si1,ji1
]. As shown in Fig. 3, There are 6 sub-networks in the

partitioned WSNs, a feasible traversal path is shaped as [s →
2,3

56
Algorithm 1 Calculating RPs and MA’s traversal path based on
ACO
Input:

(x, y),the coordinate of each sensor node in all SNi,1 ≤ i ≤ K ;
Output:

SNrp, the set of RP; [(x1, y1)→ (x2, y2)→ ...→ (xK , yK )], the
traversal path to visit these RPs;

1: for ietr ← 0 to iternum do
2: Initialize pheromone matrix Mphe and path matrix Mpath;
3: Randomly assign node in SNi as initial location of ants;
4: Calculate pheromone probability probphe;
5: Select node in next SNi to be visited according to probphe;
6: Update SNrp:add the selected node to SNrp;
7: Update traversal path:add the selected node to traversal

path;
8: if ants not traverse every SNi then
9: Jump to 2

10: end if
11: Record SNrp and traversal path;
12: update probphe;
13: end for
14: return SNrp and traversal path;

Algorithm 2 Calculating RPs and MA’s traversal path based on GA
Input:

(x, y), the coordinate of each sensor node in all SNi(1 ≤ i ≤ K );
Output:

SNrp, the set of RP; [(x1, y1) → (x2, y2) → ... → (xK , yK )],the
traversal path to visit these RPs;

1: Randomly generated P0;
2: for iter ← 0 to iternum do
3: for i← 1 to N do
4: Calculate f (hiter

i , biteri );
5: Add (hiter

i , biteri ) to P iter+1;
6: end for
7: for i← 1 to ⌊N/2⌋ do
8: Select p1 and p2 in P iter by using roulette wheel;
9: Randomly generate p ∈ [0, 1];

10: if p ≥ Pc then
11: Crossover operation on p1 and p2;
12: Add ch1 and ch2 to P iter+1;
13: end if
14: end for
15: for i← 1 to N do
16: Randomly generate p ∈ [0, 1];
17: if p ≥ Pm then
18: Mutation operation on hiter

i or biteri ;
19: Add mutated individual to P iter+1;
20: end if
21: end for
22: for individual in P iter+1 do
23: Select N individuals with best f ;
24: end for
25: end for
26: Record the best (hiter

i , biteri ) in P iternum ;
27: return SNrp and traversal path;

s3,5 → s5,3 → s4,2 → s1,4 → s6,2 → s2,3]. To conveniently
describe the details of GA, we introduce two definitions: the
sub-network sequence and the sensor node sequence. The sub-
network sequence is shaped like (i1, i2, . . . , im, . . . , iK ) where 1 ≤
im ≤ K . It represents the order MA traverses the sub-networks.
The sensor node sequence is shaped like (j , j , . . . , j , . . . , j )
i1 i2 im iK
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Algorithm 3 Calculating RPs and MA’s traversal path based on SA
Input:

(x, y), the coordinate of each sensor node in all SNi(1 ≤ i ≤ K );
Output:

SNrp, the set of RP; [(x1, y1) → (x2, y2) → ... → (xK , yK )],the
traversal path to visit these RPs;

1: Generate a random initial traversal path;
2: while Tstart > Tend do
3: for iter ← 0 to iternum do
4: Randomly replace (xi, yi) in traversal path with the node

in SNi;
5: Randomly swap two nodes in traversal path;
6: Calculate the path distance difference △;
7: if △ ⩽ 0 then
8: Accept new traversal path;
9: end if

10: if △ > 0 then
11: Probably accepte new traversal path;
12: end if
13: record SNrp and traversal path;
14: end for
15: Update Tstart ;
16: end while
17: return SNrp and traversal path;

Algorithm 4 Calculating RPs and MA’s traversal path based on
Tabu
Input:

(x, y),the coordinate of each sensor node in all SNi(1 ≤ i ≤ K );
Output:

SNrp, the set of RP; [(x1, y1)→ (x2, y2)→ ...→ (xK , yK )], the
traversal path to visit these RPs;

1: Setting up contraindication table and contraindication length;

2: Randomly generate the initial traversal path;
3: for iter ← 0 to iternum do
4: Generating candidate solutions from neighborhood search;

5: Comparison of the optimal traversal path among the
candidate paths with the current optimal path;

6: The traversal path with better effect is added to the taboo
table;

7: Update the taboo length;
8: end for
9: return SNrp and traversal path;

where 1 ≤ jim ≤ nim . It represents the order MA traverses the
Ps in sub-networks. For example, in Fig. 3, the sub-network
equence is (2, 3, 5, 4, 1, 6, 2) and the sensor node sequence is
3, 5, 3, 2, 4, 2, 3). The specific steps for calculating RPs and MA’s
moving path using GA are as follows.

(1) Initialization. First, generate the 0− th generation popula-
tion P0 which contains N individuals. Each individual represents
a feasible traversal path. We use a tuple (hj

i, b
j
i) to represent an

individual, where 1 ≤ i ≤ N , 1 ≤ j ≤ iternum (iternum is a
constant). hj

i is the sub-network sequence of the ith individual in
the jth population, bji is the corresponding sensor node sequence.
In the initialization phase, P0

= {(h0
1, b

0
1), (h

0
2, b

0
2), . . . , (h

0
N , b0N )},

the sub-network sequence and the sensor node sequence are
generated randomly.

(2) Calculation of the population fitness. In each round of
evolution, the fitness of each individual in the population is first
57
Fig. 3. A feasible traversal path.

calculated. The fitness of individual (hj
i, b

j
i) is defined as f (hj

i, b
j
i) =

1
L(hji,b

j
i)
, where L(hj

i, b
j
i) is the length of the traversal path.

(3) Selection operation. According to roulette wheel selec-
ion, two individuals in the current population are randomly
elected for the crossover operation, and these two individuals
re called two parents. The two new individuals resulting from
he crossover operation between the two parents are called off-
prings. This process is performed ⌊N/2⌋ times to produce a total
f N or N − 1 offsprings.
(4) Crossover operation. First, a random probability p in the

ange [0, 1] is generated. When p is greater the crossover proba-
bility Pc (Pc is a constant), the crossover operation is performed.
Second, using partial crossover operators, swapping partial gene
fragments of the sub-network sequence of the two parents p1 and
p2. Take Fig. 4(a) as an example, the sub-network sequence in
p1 is (1, 2, 3, 4, 5, 6, 7, 8), and the sub-network sequence in p2
is (3, 5, 8, 1, 7, 4, 2, 6), swapping the two fragments (2, 3, 4, 5)
in p1 with (5, 8, 1, 7) in p2 is shown in Fig. 4(b). After gene
fragments are swapped, two offsprings ch1 and ch2 are gener-
ated. However, we can see that there is a conflict in the sub-
network sequence of ch1 and ch2. Then, we establish a mapping
relationship 2←→ 5, 3←→ 8, 4←→ 1, 5←→ 7 based on the
two sets of genes exchanged. Finally, the conflict in ch1 and
ch2 are eliminated by the mapping relationship, and the new
sub-network sequence is obtained as shown in Fig. 4(c).

(5) Mutation operation. First, a random probability p is gener-
ated in the range [0,1]. When p is greater the mutation probability
Pm(Pm is a constant), the mutation operation is performed. We de-
sign two mutation operators to mutate the sub-network sequence
and the sensor node sequence of individuals in the current gen-
eration respectively. For example, the sub-network sequence of
an individual is (1, 2, 3, 4, 5, 6), and the gene fragments from
position 2 to position 4 of the sub-network sequence are inter-
cepted to obtain (2, 3, 4). The sub-network sequence is inter-
cepted and rejoined to get (1, 5, 6). The mutated sub-network
sequence (1, 5, 2, 3, 4, 6) is obtained after inserting the fragment
(2, 3, 4) into the 2th fragment of (1, 5, 6). The sub-network se-
quence is (1, 2, 3, 4, 5, 6), and the corresponding sensor node
sequence is (2, 3, 3, 1, 4, 5). We use node1 in SN2 instead of node3
and node2 in SN4 instead of node1, the mutated sensor node
sequence becomes (2, 1, 3, 2, 4, 5).

(6) Generation of new population. The individuals of the
current population, the offspring produced by the crossover op-
eration and the new individuals produced by the mutation op-
eration together constitute the new population. The size of the
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Fig. 5. MA can receive data as long as it moves within the communication range.

new population will reach [2N, 3N], and N optimal individuals
re selected from the new population to represent the next
opulation.

.3. EPPA

In GBA, MA moves directly to the locations of RPs to collect
ata. However, in practice, MA can receive data as long as it
oves within the communication range of RPs. This leaves room

or further optimization of MA’s moving path. For example, as
hown in Fig. 5, mi(1 ≤ i ≤ 9) is the RP of SNi, the red route is the
raversal path of RPs obtained by GBA in Section 4.2. σi(1 ≤ i ≤ 9)
s the point within the communication range of mi, if MA moves
long the black route, MA can also collect data in SNi. It is obvious
hat this moving path of MA is shorter than the traversal path of
Ps obtained by GBA. Therefore, after obtaining the RPs by GBA,
e propose an efficient path planning algorithm(EPPA).
EPPA constructs convex hull to plan a more effective moving

ath for MA to collect data from each RP. A convex hull of a set
f points S is defined as the smallest polygon containing S, where
or any two points si, sj ∈ S, the line segment from si to sj does not
ntersect the boundary of the polygon [40]. A shortest loop path
ontaining part of the RPs can be found firstly by constructing
onvex hull. Then, other RPs join the current path under the rule
f length increment minimization. Therefore, We can quickly get
traversal path of RPs as short as possible. Finally, we construct
moving path of MA which is contained by the traversal path.
Algorithm 5 shows the details of EPPA, which includes the

ollowing steps.
(1) Construct a complete convex hull. First construct a convex

ull for RPs, we use CHrp to represent the set of the vertices of the
onvex hull. The construction process consists of ascending phase
nd descending phase, as shown in Figs. 6(a), 6(b) respectively.
Ascending phase: The coordinate of the node mi in SNrp is

enoted by (xi, yi), where 1 ≤ i ≤ K . In order to construct
convex hull, we first select the node with smallest vertical

oordinate and the node with largest vertical coordinate. These
58
Algorithm 5 Plan moving path for MA

Input:
SNrp,the set of RPs m1,m2, ...mk, ...mK obtained by GBA,where
mi = (xi, yi).

Output:
MA’s moving path [σ1 → σ2...→ σK ].

1: for i← 1 to K do
2: Select point ml with the smallest yi;
3: Select point mu with the largest yi;
4: end for
5: Add ml to CHrp;
6: while ml does not encounter mu do
7: Compute θi,j of

−−→mimj;
8: Update point mj with the smallest θi,j;
9: Aaa mj to CHrp;
0: end while
1: Add mu to CHrp;
2: while mu does not encounter ml do
3: Compute θi,j of

−−→mimj;
4: Update point mj with the smallest θi,j;
5: Add mj to CHrp;
6: end while
7: if CHrp = SNrp then
8: for i← 1 to K do
9: Find mleft and mright of mi in the convex hull;
0: Find σi such that −−→miσi⊥

−−−−−−→mleftmright and d(mi, σi) ≤ r;
1: Add σi to the moving path of MA;
2: end for
3: end if
4: if CHrp ⊆ SNrp then
5: for mt not in CHrp do
6: Connect mt with (mi,mj) such that mt =

argmin[d(mi,mt )+ d(mt ,mj)− d(mi,mj)];
7: end for
8: for mi not in CHrp do
9: Find σi such that −−→miσi⊥

−−→mlmu and d(mi, σi) ≤ r;
0: Add σi to the moving path of MA;
1: end for
2: end if
3: return MA’s moving path

two nodes are denoted as ml and mu. Second, select all nodes
with vertical coordinates greater than yl. Third, calculate the
angle θ between ml and these nodes. Fourth, select the node mi
that makes the angle θl,i smallest, then, mi will become a vertex
of the convex hull. Repeat above processes until a vertices set
(ml, . . . ,mi,mj, . . . ,mu) is found.

Descending phase: First, select all nodes whose vertical co-
ordinates are smaller than yu. Second, calculate the angle θ be-
tween mu and these nodes. Third, select the node mj that makes
the angle θu,j smallest, mj will become a vertex of the con-
vex hull. These processes are repeated until another vertices set
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Fig. 6. The construction process of convex hull. (a) Ascending phase. (b) Descending phase.
mu, . . . ,mj,mi, . . . ,ml) is found. Where θi,j is calculated by the
ollowing equation.

i, j =

{
arccos xj−xi√

(xj−xi)2+(yj−yi)2
yi ⩽ yj

+∞ else
(8)

nd

i, j =

{
2π − arccos xj−xi√

(xj−xi)2+(yj−yi)2
yi ⩾ yj

+∞ else
(9)

After combining the set of vertices obtained from the as-
cending and descending phases, a complete convex hull can be
generated. For example, in Fig. 6(a), ml is the node with small-
est vertical coordinate and mu is the node with largest vertical
coordinate. These two nodes first become the vertices of the
convex hull. Then by calculating the angle θ , m1, m2 and m3 are
added to the convex hull. In Fig. 6(b), m4, m5 are chosen as the
vertices of the convex hull. Thus, we get a complete convex hull
[ml → m1 → m2 → m3 → mu → m4 → m5 → ml]. We
use CHrp to represent the set of vertices in the convex hull, and
CHrp = {ml,m1,m2,m3,mu,m4,m5}.

(2) Plan moving path for MA. There are two cases: CHrp = SNrp
or CHrp ⊆ SNrp.

Case 1(CHrp = SNrp): All RPs are the vertices of the convex
hull, as shown in Fig. 7(a). This convex hull can be seen as the
traversal path of RPs. Fig. 7(b) is used as an example to illustrate
the process of planning a moving path for MA. First, select a
vertex of the convex hull, such as m1 in Fig. 7(c). Second, connect
two vertices adjacent tom1 to form a triangle, make a vertical line
through m1, and the point σ1 where the vertical line intersects
with the communication circle is the point of MA’s moving path.
Repeat this process to find all points of MA’s moving path, and
the moving path of MA is obtained by traversing these points
with the order of traversing RPs. The moving path obtained after
the above processes is shown in Fig. 7(c). MA’s moving path is
[σ1 → σ2 → σ3 → σ4 → σ5 → σ1].

Case 2(CHrp ⊆ SNrp): There exists RPs which are not the
vertices of convex hull,as shown in Fig. 8(a). [m1 → m2 →

m4 → m5 → m6 → m7 → m8 → m1] is a convex hull,
σi is calculated in case 1. The vertices of the convex hull can
form several pairs, such as (m1,m2), (m2,m4), . . . , (m8,m9). We
choose the non-vertex mt to connect the vertex pair (mi,mj),

where mt = argmin[d(mi,mt )+ d(mt ,mj)− d(mi,mj)]. As shown
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in Fig. 8(b), m9 connects the vertex pair (m8,m1) and m3 connects
(m2,m4), forming a traversal path [m1 → m2 → m3 → m4 →

m5 → m6 → m7 → m8 → m9 → m1] to visit the RPs.
Then we calculate the path point in the communication range

of each non-vertex. First, choose the non-vertex mt , the vertices
ml and mu with smallest vertical coordinate and largest verti-
cal coordinate respectively. These three points form a triangle
△mtmlmu. Second, make a vertical line through mt to the side
−−→mlmu, and the point σt where the vertical line intersects with the
communication circle is the point of MA’s moving path. As shown
in Fig. 9(a), m1, m5 and m9 can form a triangle. In this triangle, a
vertical line is made through m9, the point σ9 where the vertical
line intersects the communication circle is the path point. Repeat
this process to get all path points. Then follow the traversal path
of RPs to get a new moving path of MA. As shown in Fig. 9(b),
MA’s moving path [σ1 → σ2 → · · · → σ8 → σ9 → σ1] calculated
by EPPA is included in the traversal path of RPs, so the length of
moving path can be reduced.

4.4. How to aggregate data from nodes to RP

In order to aggregate data from nodes in SNi(1 ≤ i ≤ K ) to
mi(the RP in SNi), a original method is to construct a Shortest Path
tree(SP tree) with RP as the root node. There are three types of
nodes in SP tree: the root node, the internal node and the leaf
node. RP acts as the root node. Data always flows from the leaf to
RP through the internal node. The internal node must aggregate
its own data with the data received from its children before it can
forward to the next internal node. However, aggregating all data
into mi imposes huge energy overhead on mi.

To cope with the above shortcomings,we propose an Improved
SP tree(ISP tree). Considering that when MA moves to the com-
munication range of RP, MA is able to collect data in the RP.
Meanwhile, MA can also collect data from those nodes which are
able to communicate with MA. As shown in Fig. 10, the sensor
nodes within the blue outline can communicate directly with MA
for data transmission. MA moves to σ to collect data in RP, at this
time, MA can collect the data in nodes s2 and s3.

Based on the above observations, for each SNi, we introduce
σi which obtained by EPPA in part C as the virtual root node to
construct a better SP tree.

In SNi, we first take σi as the root, and the nodes which
can directly communicate with σi are selected as RPs. Second,
find the shortest paths from root to non-RP nodes based on the
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Fig. 7. Plan a moving path for MA. (a) All RPs are the vertices of the convex hull. (b) Find path points on the communication circle of the RPs. (c) Complete path
for MA.
Fig. 8. Choose non-vertex to connect vertex pair. (a) Some RPs are not the vertices of the convex hull. (b) Selection of the nearest vertex pair.
Fig. 9. Plan a moving path for MA. (a) Find path points on the communication circle of the RPs. (b) Complete path for MA.
ijkstra algorithm. The ISP tree ensures that the sum of hop
istances between leaf nodes and RPs is small, thus achieving
he goal of saving energy in SNi. Algorithm 6 shows the details
f constructing ISP tree with virtual root.
The energy overhead of data transmission with two different

outing trees is analyzed as follows. As shown in Fig. 11(a) each
ode generates l bits of data, and the energy consumption of
Ni comes from two main sources: (1) the energy consumed by
ending data; (2) the energy consumed by receiving data. While
ransmitting data along the routing s5 → s4 → s3 → s2 → s1,
the energy consumed in the process of sending data Et is

Et = γ1l
4∑

i=1

i+ γ2l
4∑

i=1

(5− i)d(si+1, si)ϵ (10)

The energy consumed in the process of receiving data Er is

Er = 4γ1l (11)

From the above equations, it is easy to see that the total

energy consumption of SNi is related to the sum of hop distances

60
between nodes. Therefore, reducing the sum of hop distances is
the key to reduce the energy consumption. As shown in Fig. 11(b),
there are four routings for data transmission, s5 → s4 → s3 → s2,
s9 → s8 → s7 → s6, s10 → s7 → s6, and s11 → s7 → s6.
Obviously, the sum of hop distances decrease and the energy
consumption of SNi is reduced. In addition, RP s1 receives less data
than before, so the energy burden of s1 becomes smaller.

4.5. Complexity analysis

The complexity of our proposed algorithm is analyzed in this
subsection.

Taking Algorithm 2 as an example, the complexity of con-
structing initial population which contains N individuals is O(Nn).
The complexity of calculating the fitness of population is O(NK ).
The complexity of selection operation for two individuals is O(N),
and the complexity of crossover operation for two individuals is
O(K ), so the complexity of crossover operation for population is
O(N2K ). The complexity of mutation operation for individual is
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Fig. 10. MA can communicate directly with multiple nodes.

Algorithm 6 Aggregating data from nodes to RPs

Input:
(x, y),the coordinate of each sensor node in all SNi,1 ≤ i ≤ K ;
SNrp,the set of RPs m1,m2, ...mk, ...mK obtained by GBA,where
mi = (xi, yi); σ ,the set of path points σ1, σ2, ...σk, ...σK in MA’s
moving path obtained by EPPA, where σj = (xj, yj).

Output:
An ISP tree with a virtual root.

1: for k← 1 to K do
2: Add σk to S;
3: for si in SNk do
4: if d(si,mk) ≤ r then
5: Add si to S;
6: end if
7: if d(si,mk) > r then
8: Add si to U;
9: end if
0: end for
1: while U is not empty do
2: Select si from U such that min d(si, S);
3: Add si to S;
4: Remove si from U;
5: Update the shortest path from sj to σk,where sj ∈ U;
6: end while
7: end for
8: return The ISP tree;

O(K ), so the complexity of mutation operation for population is
O(NK ). Therefore, the complexity of Algorithm 2 meets

O(Alg. 2) = O(Nn+ NK + N2K + NK )
= O(Nn+ (N + 2)NK )
= O(N2n) (12)

The complexity of computing ml and mu is O(K ). The com-
plexity of constructing a complete convex hull is O(K 2). The
complexity of finding a moving path for MA is O(K 2). Thus the
complexity of EPPA is O(K 2).
61
Table 2
Parameter and value.
Parameter Value

The number of sub-networks K 5 to 10
The total number of nodes n 100 to 500
The communication range of nodes r 5 to 20
The time interval T for sensory data to remain valid 300 s
The sensory data size l 100 bits
The speed of MA v 10 m/s
The finite time Tf 3600 s

The complexity of constructing an ISP tree in a sub-network is
O(|SNi|

2), where |SNi| denotes the number of sensor nodes in SNi.
herefore, the complexity of constructing ISP tree for the entire
artitioned WSNs is O(K |SNi|

2).

. Experiments

In this section, we evaluate the performance of our algorithm
n terms of the length of MA’s moving path and the amount of
ata collected. It is compared with the typical data collection
lgorithm Objective-Variable Tour Planning (OVTP) [12]. These
wo algorithms aim at finding a moving path for MA to collect
ata in partitioned WSNs. In addition, we also evaluated the
erformance of the ISP tree and the computational cost of our
lgorithm. We implement our algorithm using the well-known
imulator Cooja in [41]. The isolated SNi(1 ≤ i ≤ K ) are generated
andomly, the number of sub-networks K varies from 5 to 10,
nd the total number of nodes n varies from 100 to 500. It is
ssumed that each node generates 100 bits of packets at each
ime interval T . The maximum communication range r of each
ode varies between from 5 to 20. The speed of MA is v = 10 m/s.
e first calculate the RPs and the moving path of MA using
BA proposed in Section 4.2. We then use EPPA to optimize the
oving path of MA obtained by GBA. Therefore, we only show

he final results obtained by EPPA. We propose four algorithms
o calculate RPs and MA’s moving path in GBA, in this section, we
ive their experimental results and compare them.
The relevant parameters required for the experiments are

ummarized in Table 2.

.1. The length of MA’s moving path

In this section, We generate several different sub-networks
istributions. We perform 1000 experiments respectively when
he values of K , n, r are different, and the average value is
eported as the final result. Take Fig. 12 as an example, GBA
ndicates the best result among Algorithm 1, 2, 3, 4. GA-EPPA
ndicates that the base solution is first solved by GA, and then
he base solution is optimized by EPPA.

(1) The impact of K
Fig. 12 shows the impact of K on the length of MA’s mov-

ng path. It can be seen that the length of MA’s moving path
ncreases as K increases. When the number of sub-networks K
ncreases, MA needs to move to a wider geographical area to
ccess these sub-networks, and accordingly the length of moving
ath increases.
(2) The impact of n
Fig. 13 shows the impact of n on the length of MA’s moving

ath. It can be seen that the length of MA’s moving path decreases
s n increases. This is because the length of MA’s moving path is
nfluenced by the positions of the nodes. The increase of n means
hat some nodes are located at better locations, thus the moving
ath of MA becomes shorter.
(3) The impact of r
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Fig. 11. Routing tree. (a) SP tree with RP as root. (b) SP tree with virtual root.

Fig. 12. The total length of the moving path of MA. (a) T = 300 s, r = 15 m, and the total number of nodes n is 200, respectively. (b) T = 300 s, r = 15 m, and
the total number of nodes n is 400, respectively.

Fig. 13. The total length of the moving path of MA. (a) T = 300 s, r = 15 m, K = 5, respectively. (b) T = 300 s, r = 15 m, K = 8, respectively. (c) T = 300 s, r = 15
m, K = 10, respectively.

Fig. 14. The total length of the moving path of MA. (a) T = 300 s, K = 5, the total number of nodes n is 200, respectively. (b) T = 300 s, K = 8, the total number
of nodes n is 300, respectively. (c) T = 300 s, K = 10, the total number of nodes n is 400, respectively.

62
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Fig. 15. The amount of data collected in Tf . (a) T = 300 s, r = 15 m, and the total number of nodes n is 200, respectively. (b) T = 300 s, r = 15 m, and the total
number of nodes n is 400, respectively.
Fig. 16. The amount of data collected in Tf . (a) T = 300 s, r = 15 m, K = 5, respectively. (b) T = 300 s, r = 15 m, K = 8, respectively. (c) T = 300 s, r = 15 m,
K = 10, respectively.
Fig. 17. The amount of data collected in Tf . (a) T = 300 s, K = 5, the total number of nodes n is 200, respectively. (b) T = 300 s, K = 8, the total number of nodes
is 300, respectively. (c) T = 300 s, K = 10, the total number of nodes n is 400, respectively.
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Fig. 14 shows the impact of r on the length of MA’s moving
ath. It can be seen that as r becomes larger, the moving path
f MA obtained by our algorithm becomes longer. This is because
A moves directly to the location of RPs to collect data in OVTP,
hile in EPPA MA moves to a point within the communication
ange of RPs. As r becomes larger, EPPA is able to plan shorter
oving path for MA by constructing convex hull. Likewise, in
rder to reduce the energy overhead on single RP, OVTP selects
ultiple RPs in each SNi, and MA must move to the location of
ll RPs in each SNi to collect data which results in longer moving
ath of MA. Under the consideration of reducing energy overhead
n single RP, the ISP tree also selects multiple RPs, but MA always
63
ove to a point σi computed by the EPPA in each SNi to collect
ata from RPs in SNi, which results in shorter moving path of MA.
As shown in Figs. 12, 13, 14, our proposed GBA can improve

early 16%–20% of the length of MA’s moving path compared
ith OVTP on average. On the basis of the GBA, EPPA improve
early 25%–35% of the length of MA’s moving path compared with
VTP on average. Comparing Figs. 12, 13, 14, we can find that the
ength of MA’s moving path calculated by our algorithm is always
horter than the length of moving path calculated by OVTP,
egardless of the variation of K , n, and r . There are three main
easons. (1) The selection of RPs and planning moving path for MA
re two separate steps in OVTP, while our GBA combines selecting
Ps and planning moving path for MA into one step, the RPs and
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he moving path of MA are obtained simultaneously by solving
he GTSP problem. Therefore, GBA expands the solution space
f suitable RPs and moving paths of MA, which obtains many
easible solutions omitted by OVTP. (2) EPPA further optimizes
he moving path of MA obtained by using GBA, making the length
f MA’s moving path further reduced. And considering the effect
f communication range, MA no longer moves directly to RP in
PPA, but chooses a location on the communication range of RP,
hich further reduces the length of MA’s moving path. (3) Both
VTP and our algorithm select multiple RPs in one sub-networks
or reducing energy consumption. However, in our algorithm, MA
nly needs to move to one path point in SNi to collect data, while

in OVTP MA moves to multiple RPs in SNi, no doubt we plan a
shorter moving path for MA.

5.2. The amount of data collected in a given time

Given a finite time Tf of 3600 s, we compare the amount of
data collected by EPPA and OVTP within Tf . Each node generates
100 bits of data in time T , and it is assumed that MA collects data
without data loss and the time used to collect data is negligible.
We perform 1000 experiments respectively when the values of
K , n, r are different, and the average value is reported as the final
result.

(1) The impact of K
Fig. 15 shows the impact of K on the amount of data collected

in Tf . It can be seen that as K increases, the amount of data
collected by MA becomes less. This is because when n is constant,
the total amount of data collected by the MA is related to the
length of the moving path of MA. The smaller the K , the shorter
the moving path of MA. The Shorter moving path of MA means
that MA can perform more data collection tasks within Tf , thus
MA can collect more data.

(2) The impact of n
Fig. 16 shows the impact of n on the amount of data collected

in Tf . It can be seen that as n increases, the amount of data
collected by MA becomes more. This because as n increases, the
length of MA’s moving path becomes shorter, MA can perform
more data collection tasks in Tf . And an increasement in n means
that MA is able to collect more data in one data collection task,
thus MA can collect more data.

(3) The impact of r
Fig. 17 shows the impact of r on the amount of data collected

in Tf . It can be seen that as r increases, the amount of data
collected by MA using EPPA becomes more. This is because as
r increases, the moving path of MA obtained by EPPA becomes
shorter. The Shorter moving path of MA means that MA can
perform more data collection tasks within Tf , thus MA can collect
more data.

As shown in Figs. 15, 16, 17, our proposed GBA can improve
nearly 8% − 10% on the amount of data collected with OVTP on
average. On the basis of the GBA, EPPA improve nearly 15% on the
amount of data collected compared with OVTP on average. Com-
paring Figs. 15, 16, 17, we can find that EPPA always performs
better than OVTP in the amount of data collected, regardless of
the variation of K , n, and r . The fundamental reason is that EPPA
plans a more efficient moving path for MA comparing with OVTP.

5.3. The energy consumption

In this section, we evaluate the performance of the ISP tree.
We generate several different nodes distributions on the simu-
lator and perform 1000 experiments for n = 100 to n = 500
respectively, and the average value is reported as the final result.

As shown in Fig. 18, our proposed ISP tree can save nearly 20%

of energy consumption compared with the SP tree on average.

64
Fig. 18. The total energy consumption.

Fig. 19. The computational cost.

The energy consumption is further reduced when the node dis-
tribution is very dense and more nodes are selected as RPs. This
is because the total energy consumption of partitioned WSNs is
related to the sum of hop distances between nodes. Therefore,
reducing the sum of hop distances is the key to reduce the en-
ergy consumption. ISP tree avoids multi-hop routing by selecting
multiple RPs, therefore, the sum of hop distances decrease and
the energy consumption is reduced.

5.4. The calculation cost of different algorithms

In this section, we evaluate the calculation cost of different
algorithms. We generate several different nodes distributions on
the simulator and perform 10 000 experiments for n = 50 to
n = 90 respectively, and the average value is reported as the final
result.

As shown in Fig. 19, the computational cost of all the algo-
rithms increases with the number of sensor nodes. The compu-
tational cost of Genetic algorithm is comparable to that of OVTP,
while the computational cost of SA is always lower than that of
OVTP. However, GBA is superior to OVTP in terms of the length
of MA’s moving path and the data collection volume.
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. Conclusion

This paper studies the Data Collection Problem (DCP) in par-
itioned WSNs. To solve DCP, we first formalize DCP as an opti-
ization problem. Then, DCP is transformed into a GTSP problem,
nd we propose a GTSP-Based data collection Algorithm (GBA).
he RPs and the moving path of MA are calculated simultaneously
y solving it. Based on the RPs and moving path of MA obtained
y GBA, we further consider the effect of node’s communication
ange on the moving path of MA and propose an Efficient Path
lanning Algorithm(EPPA) to plan a more efficient moving path
or MA. Finally, simulation experiments are conducted to evaluate
ur algorithm. The experiments show that our algorithm out-
erforms the existing algorithms in terms of the length of MA’s
oving path and the amount of data collection per unit time.
As future work, we aim to explore rendezvous planning in

artitioned WSNs using multi-MA, and the impact of caching
apacity of each node will be considered on the selection of RPs.
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