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Due to the capability of fast deployment and controllable mobility, unmanned aerial vehicles (UAVs) play an important role in
mobile crowdsensing (MCS). However, constrained by limited battery capacity, UAVs cannot serve a wide area. In response to
this problem, the ground vehicle is introduced and used to transport, release, and recycle UAVs. However, existing works only
consider a special scenario: one ground vehicle with multiple UAVs. In this paper, we consider a more general scenario:
multiple ground vehicles with multiple UAVs. We formalize the multi-vehicle-assisted multi-UAV path planning problem,
which is a joint route planning and task assignment problem (RPTSP). To solve RPTSP, an efficient multi-vehicle-assisted
multi-UAV path planning algorithm (MVP) is proposed. In MVP, we first allocate the detecting points to proper parking spots
and then propose an efficient heuristic allocation algorithm EHA to plan the paths of ground vehicles. Besides, a genetic
algorithm and reinforcement learning are utilized to plan the paths of UAVs. MVP maximizes the profits of an MCS carrier
with a response time constraint and minimizes the number of employed vehicles. Finally, performance evaluation
demonstrates that MVP outperforms the baseline algorithm.

1. Introduction

In recent years, due to the massive increase in sensor-rich
mobile devices, mobile crowdsensing (MCS) [1] has
emerged as a new way of sensing, which relies on a crowd
of personal mobile phones, tablet computers, and other
smart gadgets to perform large-scale tasks. While tradi-
tional sensing technologies incur large overheads due to
the deployment of lots of sensors, MCS just needs to pay
some incentive rewards to attract individuals to perform
sensing tasks, which is obviously more cost-effective. There-
fore, MCS has been used in a lot of valuable applications
recently, such as detecting air quality and collecting traffic
information [2, 3].

In addition, tremendous progress in the research of
microelectromechanical systems has enabled UAVs to enter
the civilian market. Since UAVs are economical, flexible, and
easy to operate, they have been widely used in agriculture,
geological exploration, military, and other fields [4–6]. Due
to the high mobility and fast deployment, UAVs can collect

various data anywhere and anytime when equipped with
rich sensors. They could also be used to collect data in
regions where ground vehicles are difficult to reach, e.g.,
flood hazard areas. With the increasing popularity of UAVs,
more and more researchers began to introduce UAVs into
the MCS to get better performance.

Despite the mentioned benefits, the hovering time of
UAVs is quite constrained by limited battery capacity, which
prevents them from serving a wide area. To solve the prob-
lem, in practice, ground vehicles are utilized to transport
UAVs to collect data. In addition, UAVs will fly back to a
ground vehicle to charge themselves after completing
sensing tasks. The so-called vehicle-assisted UAV sensing
benefits from both the long driving distance of the vehicle
and high flexibility of UAVs [7].

After introducing the ground vehicle, efficient path plan-
ning and scheduling of drones and ground vehicle become a
key issue. There are lots of researches that are dedicated to
optimizing the routing and scheduling of vehicle-assisted
UAVs for the transporting of parcels [8–10], wherein
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vehicles can also visit the customers to deliver parcels. These
works are inappropriate for the vehicle-drone cooperative
sensing problem studied in this paper, wherein a vehicle is
only used to transport UAVs. In the meantime, only few
researches studied the routing of the vehicle-drone coopera-
tive sensing system [11, 12]. [11] assumes that the vehicle
has only one drone, and [12] considers one vehicle with
multiple drones and proposes algorithms to collect sensing
data in multiple target points simultaneously.

However, all the existing researches suppose that there is
only one ground vehicle. In real world, we need to employ
multiple vehicles with multiple drones to perform sensing
tasks simultaneously. Compared with relying on only one
ground vehicle, using multiple vehicles can effectively
improve the efficiency of the MCS system.

When involving multiple vehicles, path planning of vehi-
cles and drones becomes a more complex problem, which
cannot be converted into a classic optimization problem.
In this paper, we formalize the joint route planning and task
assignment problem (RPTSP). To simplify RPTSP, we divide
it into two subproblems: task assignment problem and path
planning problem. In our scenario, the second subproblem
includes multivehicle path planning and multi-UAV path
planning. We propose an efficient heuristic allocation algo-
rithm EHA to determine the paths of multiple vehicles,
which actually solves the task assignment problem and mul-
tivehicle path planning problem. EHA utilizes an iterative
process to assign tasks for each ground vehicle based on
the expenses incurred and the time consumed. Besides, to
solve the multi-UAV path planning problem, we trans-
formed it into a Multiple Traveling Salesmen Problem
(MTSP). After that, the genetic algorithm and reinforcement
learning are utilized to solve MTSP. In general, our goal is to
maximize the profits of the MCS carrier with a time budget
by globally optimizing the assignment of tasks and the route
of vehicles and UAVs. Besides, we hope that the number of
employed ground vehicles can be minimized.

To the best of our knowledge, we are the first to consider
the task assignment and the routing problem for multi-
vehicle-assisted multi-UAVs in MCS. The contributions of
this work are summarized as follows:

(i) We introduce multiple vehicles to the vehicle-drone
cooperative sensing system and formalize the joint
route planning and task assignment problem
(RPTSP).

(ii) To solve RPTSP, we propose a multi-vehicle-
assisted multi-UAV path planning algorithm
(MVP), which maximizes the profits of the MCS
carrier with a response time constraint

(iii) Extensive experiments are conducted, and the
results show that MVP outperforms the baseline
algorithm

The remainder of this paper is organized as follows.
Section 2 gives an overview of the existing work related to
the problem that we are addressing. Section 3 describes the
system model and problem formulation. Section 4 illustrates

the details of MVP. Section 5 introduces the simulation
experiment. Section 6 concludes this paper.

2. Related Work

Recently, a lot of researches have been conducted on MCS.
These works take different methods to perform sensing tasks
in different application scenarios: (1) the MCS system relies
on individuals’ smart devices to perform sensing tasks, (2) it
utilizes one vehicle and one drone to perform sensing tasks,
(3) it utilizes one vehicle and multiple drones to perform
sensing tasks. In the following, we will describe these works.

2.1. MCS Utilizing the Smart Devices. For traditional MCS
that relies on the smart gadgets possessed by individuals,
there have been many studies on assigning sensing tasks to
participants.

These studies have different optimization objectives; e.g.,
He et al. [13] devised an efficient local ratio-based algorithm
to maximize the benefits of the MCS carrier under a time
budget constraint; Xiong et al. [14] introduced an incentive
allocation framework to minimize total incentive payment
while ensuring predefined spatial-temporal coverage; and
Shi et al. [15] designed a crowdsensing task assignment
mechanism to maximize the task completion rate under a
predefined incentive budget.

2.2. MCS Utilizing One Vehicle and One Drone.When evolv-
ing towards MCS architectures consisting of UAVs and
vehicles, route planning should be well designed to minimize
the consumed time or rewards in performing sensing tasks.

Chen et al. [16] designed a trajectory segment selection
scheme to remove data redundancy and improve the cover-
age quality. Luo et al. [11] proposed two heuristic algorithms
to solve the two-echelon cooperated routing problem for the
ground vehicle and its carried drone. Savuran and Karakaya
[17] proposed a path optimization method that allows the
vehicle to keep moving when the drone is performing tasks.
However, the above works all consider the case of only one
drone, which makes it impossible for vehicle-assisted UAVs
to perform multiple tasks in parallel.

2.3. MCS Utilizing One Vehicle and Multiple Drones. As for
the case of using multiple UAVs, Hu et al. [18] proposed a
vehicle-assisted multi-UAV routing and scheduling algo-
rithm (VURA). It works by iteratively deriving solutions
based on UAV routes picked from the memory that contains
flight paths of drones. Through continuous joint optimiza-
tion of parking spot selection, path planning, and tour
assignment, VURA can produce a final appropriate solution.
In [12], Hu et al. proposed a novel algorithm (VAMU) based
on VURA, which schedules the multiple drones to be
launched and recycled in different places. It avoids the time
wastage when the vehicle waits for drones to return and thus
reduces the time required to complete all tasks.

However, the works mentioned above did not take mul-
tiple vehicles into account. In reality, the MCS carrier needs
to employ multiple vehicles with multiple drones to perform
sensing tasks simultaneously, which significantly improves
the efficiency of the MCS system. Therefore, this motivates
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us to consider a more general scenario, in which multiple
vehicles and multiple drones are used to perform sensing
tasks allocated by the MCS system.

3. System Model and Problem Formulation

3.1. System Model. In our model, there are several ground
vehicles with different numbers of UAVs. A set of detecting
points that UAVs need to visit and collect data are distrib-
uted in a target region. Every detecting point needs to be vis-
ited once only by a UAV. And a UAV can visit multiple
detecting points (i.e., perform sensing tasks) consecutively
in a single flight. Due to the limited battery capacity, UAVs
cannot serve a wide area. To solve the problem and maxi-
mize the efficiency in the meantime, this paper employs
multiple ground vehicles to assist UAVs.

As shown in Figure 1, with the aid of ground vehicles,
the UAVs can visit detecting points distributed in a very
large region. From the starting point, a ground vehicle trans-
ports drones to the preselected parking spots sequentially.
Once a ground vehicle arrives at a parking spot, the UAVs
carried by it are released to perform sensing tasks in nearby
detecting points. When the UAVs finish their missions of
one single trip, they return to the corresponding ground
vehicle to be charged. Notice that it is possible for a UAV
to be launched and recycled multiple times in each parking
spot. When all detection points near the parking spot have
been visited by UAVs, the ground vehicle with multiple
UAVs leaves to the next selected parking spot. Once all
detecting points are visited, the whole sensing task in the
target region is finished.

The consumed time and the generated incentive rewards
must be considered when the MCS system assigns sensing
tasks and plans the route of vehicles as well as UAVs.

For simplicity, we make the following hypothesis:

(i) The MCS system knows the coordinates of each
detecting point

(ii) Each detecting point should be accessed once

(iii) The time consumed by the UAV to perform the
sensing task in a detecting point is constant

(iv) Both the ground vehicle and UAVs travel at a con-
stant speed [12, 18]

3.2. Problem Formulation. Let G = fV , Eg be an undirected
graph where V is the set of vertex and E is the set of edge.
And V is divided into Vd = fd1, d2,⋯, dNd

g and Vp = fp1,
p2,⋯, pNp

g, which represent the set of detecting points and

the set of candidate parking spots, respectively. Nd repre-
sents the number of detecting points, and Np represents
the number of parking spots. The distance of point n1 and
n2 is denoted by disðn1, n2Þ, where the points n1 and n2
represent the detecting point or parking spot.

Ground vehicles we employed are expressed as GV =
fgv1, gv2,⋯, gvNgv

g, where Ngv represents the total num-

ber of ground vehicles. And Ugvi = fu1, u2,⋯, umi
gðgvi ∈

GVÞ denotes the set of UAVs that the vehicle gvi pos-
sesses, where mi represents the number of drones owned
by vehicle gvi. Vgvi = fdk1 , dk2 ,⋯, dki ,⋯, dkng, where dkn
∈ Vd denotes the detecting points that the UAVs pos-
sessed by gvi need to access. Besides, we use Vvehicle and
Vuav to represent the speed of the vehicles and the UAVs,
respectively. Dui

represents the maximum flight distance of
UAV ui. In this paper, the main objective is to jointly
optimize the sensing task assignment and the path plan-
ning of ground vehicles and UAVs such that the incentive
rewards produced are minimized with a time budget
constraint that is denoted as Timebudget.

We need to address the following issues: first, we should
think out how to select the proper parking points from the
roads lying on the target region. There are infinite points
that can be selected as candidate parking spots in the road
network. What we need to do is to select some points as
parking spots from this infinite number of points and
assign detecting points to these parking spots. The detect-
ing points that are assigned to parking spot pj are repre-
sented as Vpj

= fdk1 , dk2 ,⋯, dki ,⋯, dkng(pj ∈ Vp, dki ∈ Vd).

It should be guaranteed that when the vehicle is parked at
these points, the drones carried on the vehicle can access
all the detecting points.

Then, we need to plan the flight paths of UAVs when a
ground vehicle arrives at parking spot pj. In our scenario,
each drone performs a trip by visiting the detecting points
along its route sequentially. Since we employ Nu UAVs to
perform tasks in parallel, the flight paths of UAVs possessed
by ground vehicle gvi can be denoted as FPgvi

pj = fRu1
pj , R

u2
pj ,

⋯, Rumi
pj g when the ground vehicle is parking at the parking

spot pj. In detail, the flight path of ukð1 ≤ k ≤miÞ at parking
spot pj is expressed as Ruk

pj = fa1, a2,⋯, azgðaz ∈ Vpj
Þ.

We use CðRuk
pj , azÞ to denote whether the route Ruk

pj con-

tains the detecting point az , where Ruk
pj ∈ FPpj

and az ∈ Vpj
.

In detail, CðRuk
pj , azÞ = 1 means that the detecting point az is

included in the route Ruk
pj . Furthermore, AdjRuk

pj
ðda, dbÞ

(da, db ∈ Vpj
) is used to express whether the points da and

db are adjacent in the route Ruk
pj . For example, AdjRuk

pj
ðda, dbÞ

= 1 indicates that da and db are adjacent in the route Ruk
pj .

Then, the total flight distance of the UAV uk at the parking
spot pj can be defined as follows:

l Ruk
pj

� �
= 〠

da∈R
uk
pj

〠
db∈R

uk
pj

dis da, dbð ÞAdjRuk
pj

da, dbð Þ: ð1Þ

Based on the above equation, the total distance that all
UAVs of the ground vehicle gvi travel at the parking spot pj
is given as follows:

l gvi, pj
� �

= 〠
rz∈FP

gvi
p j

l rzð Þ: ð2Þ
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Besides, a sorted set of parking spots needs to be
determined for each vehicle to minimize the generated
incentive rewards with a time budget constraint. We use
Rgvi = fpki , pk2 ,⋯, pki ,⋯, pkng where pki ∈ Vp to represent
the route for the ground vehicle gvi. We use AdjRgvi

ðpa,
pbÞ to denote whether the points pa and pb are adjacent
in the vehicle route Rgvi (AdjRgvi

ðpa, pbÞ = 1) or not

(AdjRgvi
ðpa, pbÞ=0). Then, the travel distance of the ground

vehicle gvi is expressed as follows:

l gvið Þ = 〠
pa∈Rgvi

〠
pb∈Rgvi

dis pa, pbð ÞAdjRgvi
pa, pbð Þ: ð3Þ

Since the distance of UAVs and the vehicle that carries
them is calculated, we can easily get the time TimeðgviÞ
consumed by vehicle gvi with its UAVs in the whole
sensing task:

Time gvið Þ = l gvið Þ
Vvehicle

+ 〠
pj∈Rgvi

l gvi, pj
� �

Vuav
: ð4Þ

Thus, the total time Timefinal cost by all vehicles and
UAVs is defined as follows:

Timefinal = max Time gv1ð Þ, Time gv2ð Þ,⋯, Time gvið Þð Þ:
ð5Þ

Finally, the calculation of the incentive rewards gener-
ated throughout the execution of all sensing tasks should
also be confirmed. In this paper, for a ground vehicle, its
revenue depends on the total flight distance of its UAVs
and the travel distance of its ground vehicle. Therefore,
the final incentive rewards earned by a ground vehicle
are calculated as follows:

IR gvið Þ = IRbase + αl gvið Þ + β 〠
pj∈Rgvi

l gvi, pj
� �

, ð6Þ

where IRbase represents the base incentive rewards that a
ground vehicle can get if it has accepted the sensing tasks
and completed assigned tasks. α and β are the price coef-
ficients for the UAV and the vehicle, respectively, which
are used to transform distance to the price.

Start point

Parking spot

Ground vehicle

UAV

UAV route
Vehicle route
Detecting point

Figure 1: System model.
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In our scenario, for the MCS carrier, the income is
proportional to the number of detection points. Besides,
for an actual sensing task, the income is a fixed value,
which means that maximizing profits equals minimizing
expenses. Then, our objective can be transformed to min-
imize the generated incentive rewards. The total incentive
reward cost, expressed as CostðsÞ, includes all the revenues
of each ground vehicle in the solution. The algorithm
proposed in this paper is aimed at minimizing the total
incentive reward consumption.

minCost sð Þ = 〠
gvi∈GV

IR gvið Þ, ð7Þ

Nt ≥ 1, ð8Þ

mi ≥ 1,∀i ∈ 1,Nt½ �, ð9Þ

0 ≤ l Ruk
pj

� �
≤Du, ð10Þ

0 ≤ Timefinal ≤ Timebudget, ð11Þ

〠
R∈FPgvip j

〠
az∈Vpj

C R, azð Þ = Vpj

���
���,∀pj ∈ Vp: ð12Þ

Constraint (8) confirms that at least one ground
vehicle is employed. Constraint (9) emphasizes the
requirement that every ground vehicle has at least one
drone. Constraint (10) means that the flight distance of a
UAV should be less than the maximum flight distance.
Constraint (11) indicates that the time consumption in a
solution should not exceed the time budget. Constraint
(12) ensures that all detecting points of each parking spot
are visited. The notation and terminology used throughout
the paper are shown in Table 1.

4. Algorithm Design

In this section, we first introduce some challenges encoun-
tered in designing the efficient solution. Then, we propose

Table 1: Notation and terminology.

Notation Definition

Vp The set of parking spots

Vd The set of detecting points

Np The number of parking spots

Nd The number of detecting points

dis n1, n2ð Þ The distance between two different points

GV The set of ground vehicles

Ugvi The set of UAVs that the vehicle gvi possesses
Ngv The number of ground vehicles

Vgvi The set of detecting points assigned to the vehicle gvi
Vpj The set of detecting points assigned to the parking spot pj

Vvehicle The speed of ground vehicles

Vuav The speed of UAVs

Du The max flight distance of UAVs

Timebudget The budget of time

mi The number of drones of the vehicle gvi
Ruk
pj

The flight path of uk at the parking spot pj

FPgvi
pj

The flight paths of drones possessed by vehicle gvi at the parking spot pj

C Ruk
pj , az

� �
Binary indicating whether the route Ruk

pj contains the detecting point az

AdjRuk
pj

da, dbð Þ Binary indicating whether da and db are adjacent in the route Ruk
pj

l gvi, pj
� �

The total distance that all drones of the vehicle gvi travels at the parking spot pj

Rgvi The route of the vehicle gvi
l tið Þ The travel distance of the vehicle gvi
Time tið Þ The time consumed by the vehicle gvi with its drones in the whole sensing mission

IR gvið Þ The total incentive rewards earned by the vehicle gvi with its drones
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MVP to solve these problems. After that, we provide a
detailed description of each part of MVP.

4.1. The Challenges. In order to complete the whole sensing
mission effectively, we need to solve the following problems:

(1) How to allocate each detecting point to a proper
parking spot? In our scenario, the detecting points
are randomly distributed in a large target region,
and the parking spots are sampled from the points
of the road network. To reduce the distance between
the detection point and the parking point, for each
detecting point, a naive method is to allocate it to
the closest candidate parking spot, which is selected
every other distance in the roads. However, the
shortest distance between parking spots and detect-
ing points does not mean the smallest time cost for

the UAVs to visit those detecting points. It is illus-
trated by the following examples

First, as shown in Figure 2(a), some parking spots pos-
sess few detecting points. When ground vehicles traverse
these points, too few detecting points will cause some drones
to sit idle. This will incur unnecessary time wastage. Besides,
as shown in Figure 2(b), the detecting point da is assigned to
the parking spot p1 due to the shortest distance between
them. However, other detecting points assigned to the park-
ing spot p1 are far from da. Thus, it will incur a relatively
large time cost when a UAV traverses p1′s detecting points.

(2) How to allocate the parking spots to ground vehi-
cles? Unlike previous studies, we employ multiple
vehicles in the meantime. We transform the problem
of assigning sensing tasks into the parking spot

P1 P2

Detecting points that
belongs to P1

Detecting points that
belongs to P2

Parking spots

(a) Situation 1

da

P1 P2

Detecting points that
belongs to P1

Detecting points that
belongs to P2

Parking spots

(b) Situation 2

Figure 2: The situations of allocating detecting points.
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allocation problem. This problem can be defined as
follows: given a set of parking spots, a set of detecting
points, and the corresponding relation between
them, we need to determine the route for each
employed vehicle to minimize the produced incen-
tive rewards with a time budget constraint. Notice
that each parking spot can be visited exactly once
by only one ground vehicle, and the number of
employed ground vehicles is not determined until
all parking spots are allocated

(3) How to plan the paths of UAVs when a ground vehi-
cle arrives at a parking spot? After the allocation of
the detecting points, we know exactly the corre-
sponding detecting points of each parking spot.
When a ground vehicle arrives at a parking spot,
we should plan the paths of UAVs. Since every vehi-
cle possesses multiple drones, the problem can be
transformed into the multiple travelling salesman
problem (MTSP). The MTSP in our scenario is illus-
trated as follows: given a parking spot and a set of

NY

Allocation of parking spots

Select initial parking
spots and allocate the

detecting points

Optimize the allocantion of
detecting points

Get final solution

Determine the
candidate routs
for each vehicle

Select the route that
goes through 

maximum parking
 spots

If all parking 
spots are allocated

Figure 3: The overall architecture of MVP.
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Figure 4: The time cost in nonuniform environment.
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detecting points allocated to it, we need to find out a
flight path for each drone such that the total cost of
time is minimized and that each detecting point is
visited exactly once by only one drone

4.2. The Overall Architecture of MVP. The overall architec-
ture of MVP is shown in Figure 3. First, we mark a point
on roads every other distance to construct the set of initial
parking spots. After that, the detecting points are clustered
by allocating them to different parking spots according to
their distance to the parking spots. Then, in order to
improve the performance of MVP, several optimizations

are used to reallocate detecting points. Subsequently, park-
ing spots are allocated to ground vehicles in an iterative pro-
cess. In each iteration, we can determine the route of one
ground vehicle gviðgvi ∈GVÞ and the paths of gvi′s UAVs
at each parking spot. The route of gvi is represented as Rgvi
= fpk1 , pk2 ,⋯, pki ,⋯, pkngðpki ∈ VpÞ, and the paths of gvi′s
UAVs at parking spot pi are represented as FPgvi

pj = fRu1
pj ,

Ru2
pj ,⋯, Ruk

pj ,⋯, Rumi
pj g, where Ruk

pj ð1 ≤ k ≤miÞ denotes the

flight path of uk at the parking spot pj. The ground vehicle
gvi will access the parking spots in the route Rgvi sequen-
tially. Besides, gvi will release its UAVs to visit the detecting
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Figure 5: The impact of the number of tasks for different methods of selecting candidate parking spots.
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points along the paths in FPgvi
p j when it arrives at the parking

spot pj. When the iterative process ends, we get the routes of
all ground vehicles and the paths of their UAVs at each
parking spot, which ensures that all detecting points in the
target region have been accessed.

4.3. Parking Spot Selection. The selection of the parking spots
for detecting points is divided into two steps: the initializa-
tion of the parking spots and their optimization. The details
of the steps are described as follows.

4.3.1. Initialization. First, a set of candidate parking spots
is determined by sampling points on roads every other
distance. Then, for each detecting point, we calculate the
distance between it and its nearby candidate parking spot.
After that, the nearest candidate parking spot of each
detecting point is determined. These parking spots are
composed of the initial set of parking spots. Besides, there
is another method to mark the candidate parking spots
when detecting points are distributed nonuniformly. It
arranges the candidate parking spots nonuniformly. The
process is described as follows:

(1) For each of the roads, we first mark the endpoint p1
as a candidate parking spot

(2) Then, we calculate the density of detecting points
around p1. If the density is big, we mark the next
candidate parking spot at a location close to the p1.
If the density is small, we mark the next candidate
parking spot at a location far from p1

(3) After that, we calculate the density of detecting
points around the second candidate parking spot
and repeat the process above to mark all candidate
parking spots of the road

We have performed some experiments to compare these
two methods. The results of the experiments are shown in
Figures 4–6.

4.3.2. Optimization. Choosing the nearest candidate parking
spot is not always the best strategy. Therefore, in order to get
better performance, we need to optimize the allocation of
detecting points.

(a) As shown in Figure 2(a), there are many selected
parking spots that have few detecting points. It will
incur unnecessary time cost if the ground vehicle
parks at these parking spots and releases its UAVs
to access corresponding detecting points. Therefore,
the detecting points assigned to these parking spots
should be reallocated. In detail, for a selected parking
spot pj, if the number of pj′s detecting points is less
than a predefined value Nm, we will remove pj from
the set of parking spots and reallocate each detecting
point of pj to the second closest parking spot to it.
The procedure will be repeated until all selected
parking spots have at least Nm detecting points. In

the experimental part, we will investigate the impact
of Nm′s value by performing some experiments

(b) As for the situation shown in Figure 2(b), it is obvi-
ously a better choice to allocate the detecting point
da to parking spot P2 as it avoids the waste of flight
time of drones. Therefore, the detecting point in
such a situation should be reallocated. We use
Cirðc, rÞ to denote the circle with c as the center
and r as the radius. Besides, Vpj

represents the

detecting points of the parking spot pj. For a detect-
ing point di of a parking spot pi, we suppose that dk
is the nearest detecting point to it in Vpi

and the dis-
tance between di and dk isDr . Furthermore, pk is sup-
posed to be the second nearest parking spot to di. If
there is at least one detecting point in Vpk

that is
inside the circleCirðdi,DrÞ, the detecting point di will
be reallocated to pk

The pseudocode of the reallocation procedure is shown
in Algorithm 1.

4.4. Allocation of Parking Spots. After the selection of park-
ing spots, for each parking spot, we allocate it to a proper
ground vehicle. The travel route of each ground vehicle
and the flight paths of corresponding drones at each parking
spot are determined in the procedure of allocation. In a
word, we will get the final solution of RPTSP when the pro-
cedure ends. An efficient heuristic allocation algorithm EHA
is proposed to effectively allocate the parking spots.

In the procedure of allocation, for a ground vehicle gvi,
we need to find the K nearest neighbor parking spots to g
vi. A naive method is to calculate the distances between gvi
and all parking spots, which obviously incurs a large amount

Input The set of initial parking spots Vp,
the set of corresponding detecting points V :
Ouput NULL
1 for each pi ∈Vp do
2 if jVpi

j <Nm then
3 reallocate each point in Vpi

to the second
nearest parking spot to it;
4 Vp = Vp \ pi
5 end
6 else
7 for each di ∈ Vpi

do
8 calculate the distance Dr between di

and its nearest detecting point in Vpi
;

9 find di′s second nearest parking spot pk
10 if ∃dk ∈Vpk

is inside Cirðdi,DrÞ then
11 reallocate di to pk;
12 end
13 end
14 end
15 end

Algorithm 1: Reallocate the detecting points.
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of time consumption. To improve the performance, in EHA,
R-tree [19] is introduced to index the locations of all parking
spots. After that, we utilize the branch-and-bound R-tree
traversal algorithm proposed in [20] to find the K nearest
neighbor parking spots to gvi.

The details of EHA are described in Algorithm 2. EHA
starts with building R-tree RT, which utilizes the locations
of all parking spots (line 2). Then, it chooses a vehicle gvi
(line 5) and iterates to generate gvi’s candidate routes until
the consumed time exceeds the time budget constraint (lines
8-27). In each iteration, we search RT to get gvi′s nearby
parking spots P (line 9), from which the parking spot that
produces minimum incentive rewards is selected (lines 12-
23). The procedure is repeated until all vehicles’ candidate

routes have been determined (lines 4-29). Then, we choose
the vehicle gvk with maximum jRgvk j and add gvk′s corre-
sponding routes fRgvk , R

uav
gvk g into the solution Sfinal (lines

30-31). The above process will keep looping until all parking
spots have been allocated (lines 3-33).

Algorithm 2 is designed to minimize the generated
incentive rewards with a time budget constraint. In
the meantime, it minimizes the number of employed
ground vehicles.

4.5. Path Planning of UAVs. When a ground vehicle arrives
at a parking spot, the paths of its UAVs need to be planned.
Notice that the path planning of UAVs is involved in the

Input The set of selected parking spots Vp,
the set of corresponding detecting points V ,
the set of candidate vehicles GV and its UAVs U
Output The final solution Sf inal
1 Sf inal ⟵∅;
2 build R-tree RT using the points in Vp

3 do
4 for n = 1⟶ jGV j
5 select a vehicle gvi from GV ;
6 Rgvi

, Ruav
gvi

⟵∅;
7 Timegvi = 0;
8 do
9 search gvi′s nearby parking spots P according to RT ;
10 IRmin =MaxNumber;
11 Rtemp ⟵∅;
12 for each pj ∈ P do
13 Rpj

⟵ utilize GA to plan the paths of Ugvi
at pj;

14 calculate the lðgvi, pjÞ based on Rpj
;

15 calculate the current lðgviÞ when visit pj;
16 IRtemp = IRbase + αlðgviÞ + β∑pj∈Rgvi

lðgvi, pjÞ;
17 if IRtemp < IRmin then
18 IRmin = IRtemp;
19 Rtemp = Rpj

;

20 ptemp = pj;
21 Timetemp = ðlðgvi, pjÞ/VuavÞ + ðlðgviÞ/VvehicleÞ
22 end
23 end
24 Ruav

gvi
= Ruav

gvi
∪ Rtemp;

25 Rgvi = Rgvi
∪ ptemp;

26 Timegvi = Timegvi + Timetemp;
27 Timegvi = Timebudget ;
28 GV =GV \ gvi
29 end
30 select the vehicle gvk with maximum jRgvk

j
31 Sf inal = Sf inal + fRgvk

, Ruav
gvk

g
32 Vp =Vp \ Rgvk

;
33 while Vp ≠∅
34 return Sf inal

Algorithm 2: Plan the paths of ground vehicles.
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procedure of allocating parking spots for ground vehicles, as
shown in Algorithm 2. As mentioned before, this problem
can be transformed into the MTSP, which is a typical NP-
hard problem. There have been some works that concern
on the trajectory scheduling of mobile vehicles [21–23]. In
this paper, we adopt the genetic algorithm (GA) and rein-
forcement learning (RL) to solve MTSP, respectively. For
convenience, MVP that uses GA to plan the paths of UAVs
is named GA-MVP and MVP that uses RL to plan the paths
of UAVs is named RL-MVP.

4.5.1. Genetic Algorithm. GA is a search algorithm used in
computational mathematics to solve optimization. And it is
a type of evolutionary algorithm. It has been widely used
in various combinatorial optimization problems. The proce-
dure of planning paths of UAVs based on GA is illustrated
in Algorithm 3.

In the algorithm, one individual of the population is a
2D array, which is the respective routes taken by UAVs. Pc
and Pm are the probability of crossover and the probability
of mutation, respectively. Besides, the fitness function is
defined as the reciprocal of the flight distance of UAVs.

The algorithm first randomly generates some individuals
as the initial population (line 1) and then starts an iterative
process to evolve the initial population (lines 2-16). In each
iteration, the fitness of each individual in the population is
calculated (line 3). Besides, we take out two individuals that
have the largest fitness iteratively and perform crossover on
these two individuals with the probability Pc to generate a
new individual (lines 6-9). After that, the mutation is

performed on the new individual with the probability Pm
(lines 10-12). When the iteration ends, we get a new popula-
tion newPop (line 15). Finally, we select the individual with
maximum fitness in the newPop as the final routes of UAVs
(lines 17-18).

4.5.2. Reinforcement Learning. Reinforcement learning is an
area of machine learning that learns what to do in an envi-
ronment to maximize a numerical reward. Since a tradi-
tional heuristic algorithm for solving combinatorial
optimization problems may often be suboptimal due to the
hard nature of the problems, RL is a good alternative to
search the solution. In our work, we adopt the learning-
based approach in [24] to optimize the MTSP, i.e., the path
planning of UAVs.

4.6. Algorithm Complexity Analysis. In this section, we ana-
lyze the time complexity of GA-MVP. GA needs to evolve
the population jiterationj times. In each evolving process, it
will perform crossover or mutation action to generate a
new population that contains jpopulationSizej individuals.
Hence, the running time complexity of GA will be Oðj
iterationj × jpopulationSizejÞ. To generate the route of a
ground vehicle, GA-MVP needs to generate jGAj candidate
routes. For each candidate route, GA-MVP needs to search
at most jVpj parking spots. Then, GA will be used to solve
MTSP in each parking spot. Since we will generate at most
jGAj routes, the time complexity of GA-MVP is OðjGAj2
× jVpj × jiterationj × jpopulationSizejÞ.

Input The parking spot pj,
the set of corresponding detecting points Vpj

,

the UAVs Uti
Output Optimal routes of UAVs routes
1 generate initial population Pop,
jPopj = populationSize;
2 for n = 1⟶ iteration do
3 calculate the fitness of each individual in Pop;
4 newPop⟵∅;
5 for m = 1⟶ populationSize do
6 select two individuals from Pop according
to the fitness function
7 if randomð0, 1Þ < Pc perform crossover to generate a child
8 Rtemp

9 end
10 if randomð0, 1Þ < Pm
11 perform mutation on Rtemp;
12 end
13 newPop = newPop ∪ Rtemp;
14 end
15 pop = newPop;
16 end
17 select the individual routes in pop with maximum fitness;
18 return routes;

Algorithm 3: Plan the paths of UAVs.
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5. Experimental Simulation

In this section, we evaluate the proposed algorithm through
some simulation experiments. We use the simulator imple-
mented in [25]. In our experiments, a number of detecting
points are distributed in the 240 units × 240 units region, in
which 1 unit represents 50m in reality. The roads in the
region are generated randomly. For detecting points, we
consider two types of distribution: uniform distribution
and nonuniform distribution. Besides, a set of ground
vehicles is distributed randomly in the target region and is
waiting to be employed. The hovering time and speed of

all drones possessed by different ground vehicles are identi-
cal. However, different ground vehicles may have varying
numbers of drones. The speed of drones and ground vehicles
are set as 5m/s and 10m/s, respectively.

Since we are the first to study the path planning of multi-
vehicle-assisted multi-UAVs, there is no existing algorithm
that supports employing multiple vehicles. Hence, to evalu-
ate the performance of MVP in the environment of multiple
vehicles, we design a naive greedy algorithm (GRE) as the
baseline algorithm. In GRE, we utilize the method in VAMU
[12] to select parking spots and allocate detecting points.
The allocation of parking spots in GRE is greedy as it simply
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Figure 7: The impact of the number of tasks on the generated incentive rewards in the environment of multiple vehicles.
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employs all ground vehicles and allocates the closest parking
spots to each of them. After that, for each ground vehicle,
GRE utilizes GA to plan the path of the ground vehicle
and UAVs. Besides, to make the experiments more com-
plete, we compare MVP with VURA [18]. VURA is a
vehicle-assisted multi-UAV routing and scheduling algo-
rithm, but it only employs one vehicle. So the number of
available vehicles of MVP is limited to 1 when compared
with VURA. In a word, we compare MVP with GRE in the
environment of multiple vehicles but compare MVP with
VURA in the environment of a single vehicle.

In our experiments, we focus on two metrics. The first is
the incentive cost of the algorithm. It is defined by the total
incentive rewards produced in the whole procedure of per-
forming all sensing tasks. The second metric is the number
of employed vehicles. The smaller the number of required
vehicles, the better the performance of the algorithm in the
situation where vehicles may not be enough.

We designed some experiments to compare the perfor-
mance of MVP and GRE. First, we varied the number of
tasks (i.e., the number of detecting points) to study the
impact of the number of tasks. Besides, we also investigated

100 125 150 175 200 225 250 275 300

The number of tasks

RL-MVP
GA-MVP
GRE 

Th
e t

ot
al

 d
ist

an
ce

 o
f U

AV
s

7000

6500

6000

5500

5000

4500

4000

3500

(a) Uniform distribution

100 125 150 175 200 225 250 275 300

The number of tasks

5500

5000

4500

4000

3500

3000

Th
e t

ot
al

 d
ist

an
ce

 o
f U

AV
s

RL-MVP
GA-MVP
GRE 

(b) Nonuniform distribution

Figure 8: The impact of the number of tasks on the distance of UAVs in the environment of multiple vehicles.

13Wireless Communications and Mobile Computing



the impact of the number of tasks on the travel distance of
UAVs and vehicles. Then, the time budget is varied to study
its impact. After that, we varied the speed of UAVs and the
speed of ground vehicles, respectively. Finally, several exper-
iments are performed to investigate the impact of Nm for
MVP. For each of the above experiments, we performed it
in two environments: (1) uniform environment: detecting
points are distributed uniformly, and (2) nonuniform envi-
ronment: detecting points are distributed nonuniformly.

5.1. The Impact of the Number of Tasks in the Environment
of Multiple Vehicles. Figure 7 shows the impact of the num-

ber of sensing tasks on the generated incentive rewards. It
can be observed that the incentive rewards generated in all
algorithms are positively related to the number of sensing
tasks. Moreover, GA-MVP and RL-MVP outperform GRE
significantly. Besides, RL-MVP outperforms GA-MVP,
which represents that RL performs better than GA in the
path planning of UAVs.

Figures 8 and 9 present the impact of the number of
tasks on the total distance of drones and vehicles, respec-
tively. Figure 8 shows that the total flight distance of all
drones in all algorithms is approximately the same regard-
less of the varying number of tasks. Details shown in
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Figure 9 indicate that the total travel distance of all vehicles
in GA-MVP and RL-MVP is smaller than that of GRE,
which is contributed by the strategy of allocating parking
spots in MVP. Nevertheless, the total travel distance of all
vehicles increases as the number of tasks increases.

Figure 10 shows that GA-MVP and RL-MVP perform
better than GRE in terms of the number of employed vehi-
cles. The number of employed vehicles in GRE is a constant
as GRE simply employs all candidate vehicles to perform
tasks. Besides, from an overall perspective, the number of
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Figure 10: The impact of the number of tasks on the number of employed vehicles in the environment of multiple vehicles.
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employed vehicles in GA-MVP and RL-MVP increases as
the number of tasks increases. This is because when the
number of tasks increases, more ground vehicles need to
be employed due to the fixed time budget.

5.2. The Impact of the Time Budget in the Environment of
Multiple Vehicles. Figure 11 indicates that GA-MVP and
RL-MVP outperform GRE regardless of the varying time
budget. It can be seen that the performance of GRE is not

affected regardless of the varying time budget. This is
because the time cost of GRE will not exceed the time budget
as there are enough ground vehicles. Thus, the time budget
does not affect the performance of GRE. Besides, the gener-
ated incentive rewards in GA-MVP and RL-MVP decrease
as time budget increases in the uniform environment but
almost remains unchanged in the nonuniform environment.
This is because the number of employed vehicles almost
cannot decrease anymore in nonuniform environment.
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Figure 11: The impact of the time budget on the generated incentive rewards in the environment of multiple vehicles.
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5.3. The Impact of the Number of Tasks in the Environment
of a Single Vehicle. Figures 12–14 compare RL-MVP and
GA-MVP with VURA in the environment of a single vehicle.
Figure 12 indicates that the incentive rewards generated in
all algorithms are positively related to the number of sensing
tasks. It can be observed that RL-MVP outperforms other
algorithms in both uniform and nonuniform environments.
Besides, VURA performs as well as GA-MVP in the uniform
environment but does not in the nonuniform environment.
Figures 13 and 14 show that GA-MVP and RL-MVP outper-
form VURA in the path planning of UAVs but are inferior
to VURA in the path planning of the vehicle. The results
are acceptable for us since MVP is designed to solve the

problem in the environment of multiple vehicles rather than
in the environment of a single vehicle.

5.4. The Impact of Nm. Figure 15 indicates that the generated
incentive rewards in MVP decrease as the value of Nm
increases. Besides, we can observe that the generated incen-
tive rewards reduce more gently in the nonuniform environ-
ment. This is because when the detecting points are
distributed nonuniformly, most parking spots have enough
detecting points, which will not cause some drones to sit
idle. Finally, as shown in Figure 15, the value of Nm can be
set to 6 so that MVP can work well in both uniform environ-
ment and nonuniform environment.
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Figure 12: The impact of the number of tasks on the generated incentive rewards in the environment of a single vehicle.
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5.5. The Impact of the Method of Selecting Candidate Parking
Spot. Figure 4 presents the total time cost of arranging
candidate parking spots, allocating detecting points, and
optimizing the allocation in both methods. It can be noticed
that the method that arranges candidate parking spots non-
uniformly costs more time than the other method. This is
because the calculation of density is time-consuming.
Besides, Figures 5 and 6 indicate that the generated incentive
rewards in both methods are approximately the same.

In a word, RL-MVP always performs better significantly,
i.e., generating fewer incentive rewards and requiring fewer
ground vehicles when the number of tasks, the time budget,
the speed of UAVs, or the speed of ground vehicles varies.

6. Conclusion

In this paper, we propose an efficient algorithm called MVP
to address the multi-vehicle-assisted multi-UAVs path plan-
ning problem in MCS. To the best of our knowledge, we are
the first to take multiple ground vehicles into consideration.
In MVP, at first, the detecting points are allocated to proper
parking spots. Subsequently, we propose an efficient heuris-
tic allocation algorithm EHA to plan the paths of ground
vehicles. Besides, the genetic algorithm and reinforcement
learning are utilized to plan the paths of UAVs. Simulation
results show that RL-MVP outperforms the other algorithms
in terms of the generated incentive rewards in most cases. In
the environment of multiple vehicles, GRE produces about
50%-80% more incentive rewards than RL-MVP and GA-
MVP produces about 20% more incentive rewards than
RL-MVP. In the environment where only one vehicle is
available and detecting points are distributed nonuniformly,
VURA produces about 15% more incentive rewards than
RL-MVP and GA-MVP produces about 7% more incentive
rewards than RL-MVP.

In this work, we assume that all UAVs have the same fly-
ing speed and hovering time. However, in the reality, one

ground vehicle may carry different kinds of UAVs. And dif-
ferent types of UAVs have different flight speeds and hov-
ering time. Hence, as for further work, we will consider
the situation where the UAVs carried by one vehicle
may be heterogeneous.
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