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* Choosing the right indexes to build is one of the central issues in database tuning.
* Problem Definition:
* Select a set of indexes (index configuration) to be built to maximize the
performance of the given workload with some constraints.
* Constraints: storage usage, index number, and so on.

* Index interaction: an interaction exists between an index a and an index b
if the benefit of a is affected by the existence of b and vice-versa.

SELECT * FROM t WHERE a <10 OR b < 10;
(1) An index ona X
(2) An indexonb X
(3) An index on a and an indexonb VvV
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Non-Learning AutoAdmin [VLD’97] Estimated cost
method ILP [ICDE'07] Estimated cost S/M
ISRM [ICDE 19] Estimated cost S/IM
Learning-based Al Meet Al [SIGMOD’19] Learning-model SIM
method Estimated cost
Welborn et al [arxiv’19] Not mention SIM
DRL-Index [ICDEW’20] Estimated cost S

IIA means index interaction. Cons means constraints. Alog means search algorithm.

S means single column index. M means multi-column index.
Welborn’s work only focuses on single table.
DRL-index is not implemented yet.
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Prior Work
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Non-Learning  AutoAdmin [VLD97] Estimated cost Greedy index number
method ILP [ICDE-07] Estimated cost SIM X ILP storage
—SRMICDE 9l - Estimatedcost _ SIM_ _ _ X _ _Greedy, __ storage _ __
Learning-based | Al Meet Al [SIGMOD'19] Learning-model SIM Not sure Greedy index number |
method I Estimated cost |
| Welborn et al [arxiv’19] Not mention SIM v DQN no I
I DRL-Index [ICDEW’20] Estimated cost S v DQN Not mention

L_________________________l

Our Goal:

(1) Handle complex queries on multiple tables
(2) Recommend multi-column indexes
(3) Capture the index interaction

IIA means index interaction. Cons means constraints. Alog means search algorithm.
S means single column index. M means multi-column index.

Welborn’s work only focuses on single table.

DRL-index is not implemented yet.
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* Key concepts in reinforcement learning model
 The State records the information about current built indexes.
* The Action in our model is choosing an index to build.
« The Reward is defined:

_ Cost(W,X;_1) — Cost(W, X¢))
Bl Cost(W, Xo)
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 Why we choose DQN model?

* The action space is discrete, which is the same with Q-Learning and DQN

* (Q-Learning is only effective for small state space. However the state space in ISP
is quite large.

* DDPG is the algorithm for learning continuous actions.



Experiments

Question:
How well our method is compared with the current state-of-art method?

Dataset: TPC-H with SF = 1
Workload:
 WP° (generated by the TPC-H query generator with 14 templates)
« Wm (50 templates, queries on LINEITEM, multiple indexes)
Evaluation Metric:
* Estimated cost from optimizer

Compared Methods:
* [ISRM [ICDE’19]
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e Index Selection on WP for all tables
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e Index Selection on W™
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b ISRM is sensitive to the order of attributes
added in the algorithm.
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